Air-floating towing beha viors of multi-bucket foundation plat form (MBFP) are investigated with the 1/20-scale model tests and hydrodynamic so ftware MOSES. MOSES numerical model was val idated by test results, and...Air-floating towing beha viors of multi-bucket foundation plat form (MBFP) are investigated with the 1/20-scale model tests and hydrodynamic so ftware MOSES. MOSES numerical model was val idated by test results, and M OSES prototype model of MBFP can eliminate scale effect of model. The influences of towing factors of to wing speed, water depth, freeboard, and w ave direction on air-floating tow ing stability of MBFP were analyzed by model tests and validated MOSES prototype mod el. It is sho wn that the re duction of towing sp eed can effectively d ecrease the to wing force and surge acceleration to improve towing stability. Water depth is another f actor in towing s tability. Obvious shallow water effect will appear in shallow water with sma ll water depth-draft ratio and it w ill disappear gradually and air-floating towing becomes more stable with the increase of water depth. Accelerations of surge, s way and heave are small and they have modest changes when freeboard increases from 0.5 to 2 m. For MBFP, the freeboard is not suggested to be larger than 2 m in following wave. Wave direction has large influence on the towing stability, the surge acceleration and towing force are sensitive to the va riation of wave direction, the surge acceleration and towing force in following wave (0°) and counter wave (180°) are much larger than that in transverse sea (90°and 270°).展开更多
A numerical wave flume is constructed based on the Reynolds Averaged Navier-Stokes (RANS) equations with turbulence closure by a modified k - ε model to study the viscous interactiorrs of waves with vertical breakw...A numerical wave flume is constructed based on the Reynolds Averaged Navier-Stokes (RANS) equations with turbulence closure by a modified k - ε model to study the viscous interactiorrs of waves with vertical breakwaters for different overtopping cases. The goveruing equations, the turbulence model, boundary conditions, and solution method for the nu- merical wave flume are introduced briefly. The reliability of the numerical wave flume is examined by comparing the nu- merical results with the experimental measurements, and good agreements between them indicate the validity of the pre- sent model. The developments of mean velocity fields, the contours of vorticity, and the influences of wave nonlinearity on turbulence field as wave passing through vertical breakwaters are discussed in detail based on the numerical results. It is noted that the vortices at the rear of the lower submerged breakwater are close to the bottum and maytbe induce the scouring to the leeside toe of marine structure in practice. Over all, a conclusion can be obtained from this study that the turbulence in wave field around structure is induced directly by the development of boundary layer on the solid boundary, the nonlinear interaction of free surface with obstaele, and the plunging of overtopping waves.展开更多
Staged combustion of biomass is the most suitable thermo-chemical conversion for achieving lower gaseous emissions and higher fuel conversion rates.In a staged fixed bed combustion of biomass,combustion air is supplie...Staged combustion of biomass is the most suitable thermo-chemical conversion for achieving lower gaseous emissions and higher fuel conversion rates.In a staged fixed bed combustion of biomass,combustion air is supplied in two stages.In the first stage,primary air is provided below the fuel,whereas in the later stage,secondary air is supplied in the freeboard region.The available literature on the effects of air staging(secondary air location) at a constant primary air flow rate on combustion characteristics in a batch-type fixed bed combustor is limited and hence warrants further investigations.This study resolves the effect of air staging,by varying the location of secondary air in the freeboard at five secondary to total air ratios in a batch-type fixed bed combustor.Results are reported for the effects of these controlled parameters on fuel conversion rate,overall gaseous emissions(CO_(2),CO and NO_x) and temperature distributions.The fuel used throughout was densified hardwood pellets.Results show that a primary freeboard length(distance between fuel bed top and secondary air injection) of200 mm has higher fuel conversion rates and temperatures as well as lower CO emissions,at a secondary to total air ratio of 0.75 as compared to primary freeboard length of 300 mm.However,NO_x emissions were found to be lower for a primary freeboard length of 300 mm as compared to 200 mm.An increase in secondary to total air ratio from 0.33 to 0.75 resulted in higher freeboard temperatures and lower CO as well as NO_x emissions.The outcomes of this study will be helpful in the effective design of commercial scale biomass combustors for more efficient and environmentally friendly combustion.展开更多
Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter da...Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51309179)the National High Technology Research and Development Program of China(863 Program,Grant No.2012AA051705)+2 种基金the International S&T Cooperation Program of China(Grant No.2012DFA70490)the State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University)the Tianjin Municipal Natural Science Foundation(Grant No.13JCYBJC19100)
文摘Air-floating towing beha viors of multi-bucket foundation plat form (MBFP) are investigated with the 1/20-scale model tests and hydrodynamic so ftware MOSES. MOSES numerical model was val idated by test results, and M OSES prototype model of MBFP can eliminate scale effect of model. The influences of towing factors of to wing speed, water depth, freeboard, and w ave direction on air-floating tow ing stability of MBFP were analyzed by model tests and validated MOSES prototype mod el. It is sho wn that the re duction of towing sp eed can effectively d ecrease the to wing force and surge acceleration to improve towing stability. Water depth is another f actor in towing s tability. Obvious shallow water effect will appear in shallow water with sma ll water depth-draft ratio and it w ill disappear gradually and air-floating towing becomes more stable with the increase of water depth. Accelerations of surge, s way and heave are small and they have modest changes when freeboard increases from 0.5 to 2 m. For MBFP, the freeboard is not suggested to be larger than 2 m in following wave. Wave direction has large influence on the towing stability, the surge acceleration and towing force are sensitive to the va riation of wave direction, the surge acceleration and towing force in following wave (0°) and counter wave (180°) are much larger than that in transverse sea (90°and 270°).
基金supported by the National Natural Science Foundation of China (Grant No.50779045)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering (Grant No.0710)+2 种基金the Na-tional Science Foundationfor Post-doctoral Scientists of China (Grant No.20080440681)the Natural Science Foun-dation of Tianjin,China (Grant No.10JCYBJC03700)the Scientific and Technologic Development Foundation of the Higher Education Institutions of Tianjin,China (Grant No.20080906)
文摘A numerical wave flume is constructed based on the Reynolds Averaged Navier-Stokes (RANS) equations with turbulence closure by a modified k - ε model to study the viscous interactiorrs of waves with vertical breakwaters for different overtopping cases. The goveruing equations, the turbulence model, boundary conditions, and solution method for the nu- merical wave flume are introduced briefly. The reliability of the numerical wave flume is examined by comparing the nu- merical results with the experimental measurements, and good agreements between them indicate the validity of the pre- sent model. The developments of mean velocity fields, the contours of vorticity, and the influences of wave nonlinearity on turbulence field as wave passing through vertical breakwaters are discussed in detail based on the numerical results. It is noted that the vortices at the rear of the lower submerged breakwater are close to the bottum and maytbe induce the scouring to the leeside toe of marine structure in practice. Over all, a conclusion can be obtained from this study that the turbulence in wave field around structure is induced directly by the development of boundary layer on the solid boundary, the nonlinear interaction of free surface with obstaele, and the plunging of overtopping waves.
文摘Staged combustion of biomass is the most suitable thermo-chemical conversion for achieving lower gaseous emissions and higher fuel conversion rates.In a staged fixed bed combustion of biomass,combustion air is supplied in two stages.In the first stage,primary air is provided below the fuel,whereas in the later stage,secondary air is supplied in the freeboard region.The available literature on the effects of air staging(secondary air location) at a constant primary air flow rate on combustion characteristics in a batch-type fixed bed combustor is limited and hence warrants further investigations.This study resolves the effect of air staging,by varying the location of secondary air in the freeboard at five secondary to total air ratios in a batch-type fixed bed combustor.Results are reported for the effects of these controlled parameters on fuel conversion rate,overall gaseous emissions(CO_(2),CO and NO_x) and temperature distributions.The fuel used throughout was densified hardwood pellets.Results show that a primary freeboard length(distance between fuel bed top and secondary air injection) of200 mm has higher fuel conversion rates and temperatures as well as lower CO emissions,at a secondary to total air ratio of 0.75 as compared to primary freeboard length of 300 mm.However,NO_x emissions were found to be lower for a primary freeboard length of 300 mm as compared to 200 mm.An increase in secondary to total air ratio from 0.33 to 0.75 resulted in higher freeboard temperatures and lower CO as well as NO_x emissions.The outcomes of this study will be helpful in the effective design of commercial scale biomass combustors for more efficient and environmentally friendly combustion.
基金The National Natural Science Foundation of China under contract No.42076235.
文摘Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.