Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura...Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.展开更多
The bending section of tube between the bending die and the guider is in a less constrained state during the free bending process.The free bending dies have the important impact on the plastic deformation behavior and...The bending section of tube between the bending die and the guider is in a less constrained state during the free bending process.The free bending dies have the important impact on the plastic deformation behavior and the forming quality of tube.To study the evolution law of the deformation behavior of tube with the die structure parameters and optimize the free bending die parameters,the free bending experiments and the corresponding numerical simulations were carried out.The design principle of free bending die was illustrated.The free bending experiment was conducted to verify the reliability of the numerical simulation method.Based on the numerical simulation results,the influence of the distance between the center point of bending die and the front end of guider on the forming quality of bent tube is more obvious than that of the fillet of guider.However,the fillet of bending die hardly affects the stress and strain distribution and the evolution of the wall thickness.Finally,the free bending experiments with the newly determined free bending dies were conducted.The ultimate bending radius of bent tube is reduced and the forming quality is improved.展开更多
The impacts of HfOx inserting layer thickness on the electrical properties of the ZnO-based transparent resistance random access memory (TRRAM) device were investigated in this paper. The bipolar resistive switching...The impacts of HfOx inserting layer thickness on the electrical properties of the ZnO-based transparent resistance random access memory (TRRAM) device were investigated in this paper. The bipolar resistive switching behavior of a single ZnO film and bilayer HfOx/ZnO films as active layers for TRRAM devices was demonstrated. It was revealed that the bilayer TRRAM device with a 10-nm HfOx inserted layer had a more stable resistive switching behavior than other devices including the single layer device, as well as being forming free, and the transmittance was more than 80% in the visible region. For the HfOx/ZnO devices, the current conduction behavior was dominated by the space-charge-limited current mechanism in the low resistive state (LRS) and Schottky emission in the high resistive state (HRS), while the mechanism for single layer devices was controlled by ohmic conduction in the LRS and Poole-Frenkel emission in the HRS.展开更多
基金financially supported by the Beijing Natural Science Foundation for Young Scientists(Grant No.8214052)the Talent Fund of Beijing Jiaotong University(Grant No.2021RC226)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2115).
文摘Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation.
基金The investigation was supported from the Opening Project of State Key Lab of Digital Manufacturing Equipment&Technology(No.DMETKF2021004)the National Natural Science Foundation of China(Nos.52105360,U1937206,and 52175328)+1 种基金2021 Jiangsu Shuangchuang Talent Program(JSSCBS20210157)Fundamental Research Funds for the Central Universities(No.NS2022061).
文摘The bending section of tube between the bending die and the guider is in a less constrained state during the free bending process.The free bending dies have the important impact on the plastic deformation behavior and the forming quality of tube.To study the evolution law of the deformation behavior of tube with the die structure parameters and optimize the free bending die parameters,the free bending experiments and the corresponding numerical simulations were carried out.The design principle of free bending die was illustrated.The free bending experiment was conducted to verify the reliability of the numerical simulation method.Based on the numerical simulation results,the influence of the distance between the center point of bending die and the front end of guider on the forming quality of bent tube is more obvious than that of the fillet of guider.However,the fillet of bending die hardly affects the stress and strain distribution and the evolution of the wall thickness.Finally,the free bending experiments with the newly determined free bending dies were conducted.The ultimate bending radius of bent tube is reduced and the forming quality is improved.
基金国家自然科学基金联合基金项目(U1937206)江苏省重点研发计划(BE2019007-2)+4 种基金南工程-实验室开放基金(ASMA201903)青年科技创新基金项目-理工军口类(NT2020015)江苏省自然科学基金青年基金(BK20200453)宁波市“科技创新2025”重大专项(2020Z078)National Natural Science Foundation of China International(Regional)Cooperation and Exchange Program(5201101342)。
基金Project supported by the National Key Research and Development Program of China(Grant No.2017yfb0405600)the National Natural Science Foundation of China(Grant Nos.61404091,61274113,61505144,51502203,and 51502204)the Natural Science Foundation of Tianjin City(Grant Nos.17JCYBJC16100 and 17JCZDJC31700)
文摘The impacts of HfOx inserting layer thickness on the electrical properties of the ZnO-based transparent resistance random access memory (TRRAM) device were investigated in this paper. The bipolar resistive switching behavior of a single ZnO film and bilayer HfOx/ZnO films as active layers for TRRAM devices was demonstrated. It was revealed that the bilayer TRRAM device with a 10-nm HfOx inserted layer had a more stable resistive switching behavior than other devices including the single layer device, as well as being forming free, and the transmittance was more than 80% in the visible region. For the HfOx/ZnO devices, the current conduction behavior was dominated by the space-charge-limited current mechanism in the low resistive state (LRS) and Schottky emission in the high resistive state (HRS), while the mechanism for single layer devices was controlled by ohmic conduction in the LRS and Poole-Frenkel emission in the HRS.