Three-dimensional numerical manifold method for unconfined seepage analysis is proposed in this article.By constructing hydraulic potential functions of the manifold element,the element conductivity matrix and the glo...Three-dimensional numerical manifold method for unconfined seepage analysis is proposed in this article.By constructing hydraulic potential functions of the manifold element,the element conductivity matrix and the global simultaneous equations for unconfined seepage analysis are derived in detail.The algorithm of locating the free surface and the formula for seepage forces are also given.Three-dimensional manifold method employs the tetrahedral mathematical meshes to cover the whole material volume.In the iterative process for locating the free surface,the manifold method can achieve an accurate seepage analysis of the saturated domain below the free surface with mathematical meshes unchanged.Since the shape of manifold elements can be arbitrary,the disadvantage of changing the permeability of transitional elements cut by the free surface in the conventional Finite Element Method(FEM) is removed,and the accuracy of locating the free surface can be ensured.Furthermore,the seepage force acting on the transitional elements can be accurately calculated by the simplex integration.Numerical results for a typical example demonstrate the validity of the proposed method.展开更多
Meshless or mesh-free (or shorten as MFree) methods have been proposed and achieved remarkable progress over the past few years. The idea of combining MFree methods with other existing numerical techniques such as t...Meshless or mesh-free (or shorten as MFree) methods have been proposed and achieved remarkable progress over the past few years. The idea of combining MFree methods with other existing numerical techniques such as the finite element method (FEM) and the boundary element method (BEM), is naturally of great interest in many practical applications. However, the shape functions used in some MFree methods do not have the Kronecker delta function property. In order to satisfy the combined conditions of displacement compatibility, two numerical techniques, using the hybrid displacement shape function and the modified variational form, are developed and discussed in this paper. In the first technique, the original MFree shape functions are modified to the hybrid forms that possess the Kronecker delta function property. In the second technique, the displacement compatibility is satisfied via a modified variational form based on the Lagrange multiplier method. Formulations of several coupled methods are presented. Numerical exam- ples are presented to demonstrate the effectiveness of the present coupling methods.展开更多
A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smago...A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smagorinsky sub-grid model and Computational Lagrangian-Eulerian Advection Remap Volume of Fluid (CLEAR-VOF) method. The present FEM-LES-VOF model allows the fluid flows involving violent free surface and turbulence subject to complex boundary configuration to be simulated in a straightforward manner with unstructured grids in the context of finite element method. Numerical simulation of a benchmark problem of dam breaking is conducted to verify the present model. Comparisons with experimental data show that the proposed model works well and is capable of producing reliable predictions for free surface flows. Using the FEM-LES-VOF model, the free surface flow over a semi-circular obstruction is investigated. The simulation results are compared with available experimental and numerical results. Good performance of the FEM-LES-VOF model is demonstrated again. Moreover, the numerical studies show that the turbulence plays an important role in the evolution of free surface when the reflected wave propagates upstream during the fluid flow passing the submerged obstacle.展开更多
n the area of naval architecture and ocean engineering,the research about the underwater xplosion problem is of great significance.To achieve prolonged simulation of near-free surface underwater explosion,the underwat...n the area of naval architecture and ocean engineering,the research about the underwater xplosion problem is of great significance.To achieve prolonged simulation of near-free surface underwater explosion,the underwater explosion transient numerical model is established in this paper based on compressible Eulerian finite element method(EFEM).Compared with Geers Hunter formula,EFEM is availably validated by simulating the free-field underwater xplosion case.Then,the bubble pulsation and flow field dynamic characteristics of the cases with different underwater explosive depth are compared in this work.Lastly,the height of the water hump and the pressure of flow flied are analyzed quantitatively through the simulation results.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50725931, 50839004)the Ministry of Education of China for New Century Excellent Talents in University (Grant No. NCET-07-0632)
文摘Three-dimensional numerical manifold method for unconfined seepage analysis is proposed in this article.By constructing hydraulic potential functions of the manifold element,the element conductivity matrix and the global simultaneous equations for unconfined seepage analysis are derived in detail.The algorithm of locating the free surface and the formula for seepage forces are also given.Three-dimensional manifold method employs the tetrahedral mathematical meshes to cover the whole material volume.In the iterative process for locating the free surface,the manifold method can achieve an accurate seepage analysis of the saturated domain below the free surface with mathematical meshes unchanged.Since the shape of manifold elements can be arbitrary,the disadvantage of changing the permeability of transitional elements cut by the free surface in the conventional Finite Element Method(FEM) is removed,and the accuracy of locating the free surface can be ensured.Furthermore,the seepage force acting on the transitional elements can be accurately calculated by the simplex integration.Numerical results for a typical example demonstrate the validity of the proposed method.
文摘Meshless or mesh-free (or shorten as MFree) methods have been proposed and achieved remarkable progress over the past few years. The idea of combining MFree methods with other existing numerical techniques such as the finite element method (FEM) and the boundary element method (BEM), is naturally of great interest in many practical applications. However, the shape functions used in some MFree methods do not have the Kronecker delta function property. In order to satisfy the combined conditions of displacement compatibility, two numerical techniques, using the hybrid displacement shape function and the modified variational form, are developed and discussed in this paper. In the first technique, the original MFree shape functions are modified to the hybrid forms that possess the Kronecker delta function property. In the second technique, the displacement compatibility is satisfied via a modified variational form based on the Lagrange multiplier method. Formulations of several coupled methods are presented. Numerical exam- ples are presented to demonstrate the effectiveness of the present coupling methods.
基金the National Natural Science Foundation of China (Grant No. 50409015)the Program forChangjiang Scholars and Innovative Research Team inUniversity (Grant No. IRT0420) the 40th ChinaPostdoctoral Science Foundation
文摘A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smagorinsky sub-grid model and Computational Lagrangian-Eulerian Advection Remap Volume of Fluid (CLEAR-VOF) method. The present FEM-LES-VOF model allows the fluid flows involving violent free surface and turbulence subject to complex boundary configuration to be simulated in a straightforward manner with unstructured grids in the context of finite element method. Numerical simulation of a benchmark problem of dam breaking is conducted to verify the present model. Comparisons with experimental data show that the proposed model works well and is capable of producing reliable predictions for free surface flows. Using the FEM-LES-VOF model, the free surface flow over a semi-circular obstruction is investigated. The simulation results are compared with available experimental and numerical results. Good performance of the FEM-LES-VOF model is demonstrated again. Moreover, the numerical studies show that the turbulence plays an important role in the evolution of free surface when the reflected wave propagates upstream during the fluid flow passing the submerged obstacle.
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(Grant 11672081)the Industrial Technology Development Program(Grants JCKY2018604C010 and JCKY2017604C002).Finally,Thanks for the help of Zu-Hui Li during writing the paper.
文摘n the area of naval architecture and ocean engineering,the research about the underwater xplosion problem is of great significance.To achieve prolonged simulation of near-free surface underwater explosion,the underwater explosion transient numerical model is established in this paper based on compressible Eulerian finite element method(EFEM).Compared with Geers Hunter formula,EFEM is availably validated by simulating the free-field underwater xplosion case.Then,the bubble pulsation and flow field dynamic characteristics of the cases with different underwater explosive depth are compared in this work.Lastly,the height of the water hump and the pressure of flow flied are analyzed quantitatively through the simulation results.