利用RFPA(Rock Fracture Process Analysis)软件,数值计算了不同水力射孔参数及地应力等条件下的孔眼直径、射孔深度、射孔孔眼轴线与最大水平应力夹角、压裂液加载速度、模型尺寸、地层起裂压力以及裂缝二维扩展情况,计算过程中模拟的...利用RFPA(Rock Fracture Process Analysis)软件,数值计算了不同水力射孔参数及地应力等条件下的孔眼直径、射孔深度、射孔孔眼轴线与最大水平应力夹角、压裂液加载速度、模型尺寸、地层起裂压力以及裂缝二维扩展情况,计算过程中模拟的岩样物性基本保持不变。计算结果发现,增加射孔直径、深度可以显著降低起裂压力;沿最大水平应力方向射孔起裂压力最低;存在一个最优的压裂液加载速度。这些计算结果可为油水井的压裂设计提供参考。展开更多
The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson– Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image a...The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson– Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image analysis method using ABAQUS and GTN models. The modified GTN damage model was used to simulate the initiation and propagation of cracks in an as-cast 304 stainless steel with MnS inclusions at 900 C. The simulation results agreed well with the experimental results, indicating that the model can be effectively applied to examine the high-temperature fracture behavior of MnS inclusions. The simulation and high-temperature tensile test results revealed that MnS inclusions increased the number of holes initiation and the probability of hole polymerization, reduced the crack propagation resistance, accelerated the occurrence of material fracture behavior, and were closely related to the stress state at high temperatures. When the stress triaxiality was low, the plastic strain in the metal matrix was high, and the MnS plastic inclusions accelerated the polymerization of the pores, making metal fracture failure more likely. On the other hand, when the stress triaxiality was high, the stress state in the metal matrix was biased to the tensile state, the plastic strain in the metal matrix was low, and the influence of MnS plastic inclusions on the fracture behavior was not evident.展开更多
The asymmetric semi-circular bend(ASCB)specimen has been proposed to investigate the cracking behavior in different geo and construction materials and attracted the attention of researchers due to its advantages.Howev...The asymmetric semi-circular bend(ASCB)specimen has been proposed to investigate the cracking behavior in different geo and construction materials and attracted the attention of researchers due to its advantages.However,there are few studies on the fracture toughness determination of rock materials.In this work,a series of fracture tests were performed with the ASCB specimens made of granite.The onset of fracture,crack initiation angle and crack propagating trajectory was analyzed in detail combined with several mixed mode fracture criteria.The influence of the crack length on the mode Ⅰ/Ⅱ fracture toughness was studied.A comparison between the fracture toughness ratios predicted by varying criteria and experimental results was conducted.The relationship between experimentally determined crack initiation angles and curves of the generalized maximum tangential stress(GMTS)criterion was obtained.The fracture process of the specimen was recorded with the high-speed camera.The shortcomings of the ASCB specimens for the fracture toughness determination of rock materials were discussed.The results may provide a reference for analysis of mixed mode I and II fracture behavior of brittle materials.展开更多
As an estimate for the in-situ spalling strength around massive underground excavations to moderately jointed brittle rocks, crack initiation stress marks the initiation of rock micro fracturing. It is crucial to accu...As an estimate for the in-situ spalling strength around massive underground excavations to moderately jointed brittle rocks, crack initiation stress marks the initiation of rock micro fracturing. It is crucial to accurately identify crack initiation stress level by proper method. In this study, confined compression tests of sandstone samples are used to examine the validity/applicability of proposed axial strain stiffness method. The results show that by highlighting the minuscule changes in stress-strain curve, the axial strain stiffness curve provided further insight into rock failure process and revealed five stages:(a) irregular fluctuation,(b) nearly horizontal regular fluctuation,(c) irregular fluctuation gradually decreasing to zero,(d) extreme fluctuation, and(e) near zero, which mainly correspond to five stages of stress–strain curve. The ratio of crack-initiation stress to peak strength determined using this approach is 0.44–0.51, similar to the ranges previously reported by other researchers. In this method, the key is to accurately detect the end point of the stage(b), "nearly horizontal regular fluctuation" characterized by a sudden change in axial strain stiffness curve, and the sudden change signifies crack initiation in rock sample. Finally, the research indicates that the axial strain stiffness curve can provide a mean to identify the crack-initiation stress thresholds in brittle rocks.展开更多
文摘利用RFPA(Rock Fracture Process Analysis)软件,数值计算了不同水力射孔参数及地应力等条件下的孔眼直径、射孔深度、射孔孔眼轴线与最大水平应力夹角、压裂液加载速度、模型尺寸、地层起裂压力以及裂缝二维扩展情况,计算过程中模拟的岩样物性基本保持不变。计算结果发现,增加射孔直径、深度可以显著降低起裂压力;沿最大水平应力方向射孔起裂压力最低;存在一个最优的压裂液加载速度。这些计算结果可为油水井的压裂设计提供参考。
基金This research was supported by the National Natural Science Foundation of China (Grant Nos. 51575475 and 51675465).
文摘The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson– Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image analysis method using ABAQUS and GTN models. The modified GTN damage model was used to simulate the initiation and propagation of cracks in an as-cast 304 stainless steel with MnS inclusions at 900 C. The simulation results agreed well with the experimental results, indicating that the model can be effectively applied to examine the high-temperature fracture behavior of MnS inclusions. The simulation and high-temperature tensile test results revealed that MnS inclusions increased the number of holes initiation and the probability of hole polymerization, reduced the crack propagation resistance, accelerated the occurrence of material fracture behavior, and were closely related to the stress state at high temperatures. When the stress triaxiality was low, the plastic strain in the metal matrix was high, and the MnS plastic inclusions accelerated the polymerization of the pores, making metal fracture failure more likely. On the other hand, when the stress triaxiality was high, the stress state in the metal matrix was biased to the tensile state, the plastic strain in the metal matrix was low, and the influence of MnS plastic inclusions on the fracture behavior was not evident.
基金Projects(52004182,51804110,51904101)supported by the National Natural Science Foundation of ChinaProject(2020JJ5188)supported by the Natural Science Foundation of Hunan Province,China。
文摘The asymmetric semi-circular bend(ASCB)specimen has been proposed to investigate the cracking behavior in different geo and construction materials and attracted the attention of researchers due to its advantages.However,there are few studies on the fracture toughness determination of rock materials.In this work,a series of fracture tests were performed with the ASCB specimens made of granite.The onset of fracture,crack initiation angle and crack propagating trajectory was analyzed in detail combined with several mixed mode fracture criteria.The influence of the crack length on the mode Ⅰ/Ⅱ fracture toughness was studied.A comparison between the fracture toughness ratios predicted by varying criteria and experimental results was conducted.The relationship between experimentally determined crack initiation angles and curves of the generalized maximum tangential stress(GMTS)criterion was obtained.The fracture process of the specimen was recorded with the high-speed camera.The shortcomings of the ASCB specimens for the fracture toughness determination of rock materials were discussed.The results may provide a reference for analysis of mixed mode I and II fracture behavior of brittle materials.
基金supported by the National Natural Science Foundation of China(Grants No.41772329,41572283 and 41230635)the funding of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Nos.SKLGP2017Z001 and SKLGP2013Z004)supported by the Funding of Science and Technology Office of Sichuan Province(Grants No.2015JQ0020 and 2017TD0018)
文摘As an estimate for the in-situ spalling strength around massive underground excavations to moderately jointed brittle rocks, crack initiation stress marks the initiation of rock micro fracturing. It is crucial to accurately identify crack initiation stress level by proper method. In this study, confined compression tests of sandstone samples are used to examine the validity/applicability of proposed axial strain stiffness method. The results show that by highlighting the minuscule changes in stress-strain curve, the axial strain stiffness curve provided further insight into rock failure process and revealed five stages:(a) irregular fluctuation,(b) nearly horizontal regular fluctuation,(c) irregular fluctuation gradually decreasing to zero,(d) extreme fluctuation, and(e) near zero, which mainly correspond to five stages of stress–strain curve. The ratio of crack-initiation stress to peak strength determined using this approach is 0.44–0.51, similar to the ranges previously reported by other researchers. In this method, the key is to accurately detect the end point of the stage(b), "nearly horizontal regular fluctuation" characterized by a sudden change in axial strain stiffness curve, and the sudden change signifies crack initiation in rock sample. Finally, the research indicates that the axial strain stiffness curve can provide a mean to identify the crack-initiation stress thresholds in brittle rocks.