According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are construc...According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.展开更多
离子型金属聚合物复合材料(ionic polymer metal composites,IPMC)是一种具有广阔应用前景的电驱动智能复合材料,但是它具有强非线性,尤其是磁滞特性,严重影响了控制精度。分数阶控制系统的提出,不仅涵盖了传统的整数阶系统,还对其进行...离子型金属聚合物复合材料(ionic polymer metal composites,IPMC)是一种具有广阔应用前景的电驱动智能复合材料,但是它具有强非线性,尤其是磁滞特性,严重影响了控制精度。分数阶控制系统的提出,不仅涵盖了传统的整数阶系统,还对其进行了补充,大大增加了控制理论的鲁棒性和易模拟性。为了准确建立IPMC模型,首先通过实验数据和人工蜂群算法对整数阶模型进行参数寻优,再将其转化成拟合度更高的分数阶模型。针对该分数阶模型,提出并介绍了基于分数阶的二阶滑模控制器的理论内容,并从仿真与实验两个方面分别与分数阶PIλDμ控制器作对比,结果表明了所提出控制方法的控制效果更好。展开更多
在系统分析与设计过程中,针对高阶动态系统所具有的时滞性,常常利用具有延迟环节的一阶(first order plus time delay,FOPTD)或者二阶系统(second order plus time delay,SOPTD)模型对其进行近似处理,由于建模误差过大影响所描述系统的...在系统分析与设计过程中,针对高阶动态系统所具有的时滞性,常常利用具有延迟环节的一阶(first order plus time delay,FOPTD)或者二阶系统(second order plus time delay,SOPTD)模型对其进行近似处理,由于建模误差过大影响所描述系统的准确性和控制性能。本文给出了具有延迟环节的新型非整数阶类一阶系统模型(non-integer order plus time delay,NIOPTD),并分别设计了某高阶系统降阶得到的传统模型与新型类一阶系统近似模型,对比分析新型类一阶系统模型的优点与可行性。针对上述3种系统模型(FOPTD、SOPTD、NIOPTD)在频域内给出分数阶PIλDμ控制器新的参数整定方法,通过仿真对比分析得出方法的有效性,并证实分数阶PIλDμ控制器作用于NIOPTD模型具有最好的控制性能和鲁棒稳定性。展开更多
In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional cal...In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.展开更多
基金supported by National Natural Science Foundation of China(61104085,51505213)Natural Science Foundation of Jiangsu Province(BK20151463,BK20130744)+2 种基金Innovation Foundation of NJIT(CKJA201409,CKJB201209)sponsored by Jiangsu Qing Lan ProjectJiangsu Government Scholarship for Overseas Studies(JS-2012-051)
基金Sponsored by the National Natural Sciences Foundation of China(Grant No.61201227)
文摘According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.
文摘离子型金属聚合物复合材料(ionic polymer metal composites,IPMC)是一种具有广阔应用前景的电驱动智能复合材料,但是它具有强非线性,尤其是磁滞特性,严重影响了控制精度。分数阶控制系统的提出,不仅涵盖了传统的整数阶系统,还对其进行了补充,大大增加了控制理论的鲁棒性和易模拟性。为了准确建立IPMC模型,首先通过实验数据和人工蜂群算法对整数阶模型进行参数寻优,再将其转化成拟合度更高的分数阶模型。针对该分数阶模型,提出并介绍了基于分数阶的二阶滑模控制器的理论内容,并从仿真与实验两个方面分别与分数阶PIλDμ控制器作对比,结果表明了所提出控制方法的控制效果更好。
文摘在系统分析与设计过程中,针对高阶动态系统所具有的时滞性,常常利用具有延迟环节的一阶(first order plus time delay,FOPTD)或者二阶系统(second order plus time delay,SOPTD)模型对其进行近似处理,由于建模误差过大影响所描述系统的准确性和控制性能。本文给出了具有延迟环节的新型非整数阶类一阶系统模型(non-integer order plus time delay,NIOPTD),并分别设计了某高阶系统降阶得到的传统模型与新型类一阶系统近似模型,对比分析新型类一阶系统模型的优点与可行性。针对上述3种系统模型(FOPTD、SOPTD、NIOPTD)在频域内给出分数阶PIλDμ控制器新的参数整定方法,通过仿真对比分析得出方法的有效性,并证实分数阶PIλDμ控制器作用于NIOPTD模型具有最好的控制性能和鲁棒稳定性。
基金Project supported by the National Natural Science Foundation of China (Grant No. 51177117)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100201110023)
文摘In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.