Image enhancement is an important preprocessing task as the contrast is low in most of the medical images,Therefore,enhancement becomes the mandatory process before actual image processing should start.This research a...Image enhancement is an important preprocessing task as the contrast is low in most of the medical images,Therefore,enhancement becomes the mandatory process before actual image processing should start.This research article proposes an enhancement of the model-based differential operator for the images in general and Echocardiographic images,the proposed operators are based on Grunwald-Letnikov(G-L),Riemann-Liouville(R-L)and Caputo(Li&Xie),which are the definitions of fractional order calculus.In this fractional-order,differentiation is well focused on the enhancement of echocardiographic images.This provoked for developing a non-linear filter mask for image enhancement.The designed filter is simple and effective in terms of improving the contrast of the input low contrast images and preserving the textural features,particularly in smooth areas.The novelty of the proposed method involves a procedure of partitioning the image into homogenous regions,details,and edges.Thereafter,a fractional differential mask is appropriately chosen adaptively for enhancing the partitioned pixels present in the image.It is also incorporated into the Hessian matrix with is a second-order derivative for every pixel and the parameters such as average gradient and entropy are used for qualitative analysis.The wide range of existing state-of-the-art techniques such as fixed order fractional differential filter for enhancement,histogram equalization,integer-order differential methods have been used.The proposed algorithm resulted in the enhancement of the input images with an increased value of average gradient as well as entropy in comparison to the previous methods.The values obtained are very close(almost equal to 99.9%)to the original values of the average gradient and entropy of the images.The results of the simulation validate the effectiveness of the proposed algorithm.展开更多
In this paper, two numerical methods are proposed for solving distributed-order fractional Bagley-Torvik equation.This equation is used in modeling the motion of a rigid plate immersed in a Newtonian fluid with respec...In this paper, two numerical methods are proposed for solving distributed-order fractional Bagley-Torvik equation.This equation is used in modeling the motion of a rigid plate immersed in a Newtonian fluid with respect to the nonnegative density function. Using the composite Boole's rule the distributedorder Bagley-Torvik equation is approximated by a multi-term time-fractional equation, which is then solved by the GrunwaldLetnikov method(GLM) and the fractional differential transform method(FDTM). Finally, we compared our results with the exact results of some cases and show the excellent agreement between the approximate result and the exact solution.展开更多
We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative.The method is developed by dividing the domain into a number of subintervals,and applying the quadra...We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative.The method is developed by dividing the domain into a number of subintervals,and applying the quadratic interpolation on each subinterval.The method is shown to be unconditionally stable,and for general nonlinear equations,the uniform sharp numerical order 3−νcan be rigorously proven for sufficiently smooth solutions at all time steps.The proof provides a gen-eral guide for proving the sharp order for higher-order schemes in the nonlinear case.Some numerical examples are given to validate our theoretical results.展开更多
In this paper,sufficient conditions are formulated for controllability of fractional order stochastic differential inclusions with fractional Brownian motion(f Bm) via fixed point theorems,namely the Bohnenblust-Karli...In this paper,sufficient conditions are formulated for controllability of fractional order stochastic differential inclusions with fractional Brownian motion(f Bm) via fixed point theorems,namely the Bohnenblust-Karlin fixed point theorem for the convex case and the Covitz-Nadler fixed point theorem for the nonconvex case.The controllability Grammian matrix is defined by using Mittag-Leffler matrix function.Finally,a numerical example is presented to illustrate the efficiency of the obtained theoretical results.展开更多
The study of dynamic behaviour of nonlinear models that arise in ocean engineering play a vital role in our daily life.There are many examples of ocean water waves which are nonlinear in nature.In shallow water,the li...The study of dynamic behaviour of nonlinear models that arise in ocean engineering play a vital role in our daily life.There are many examples of ocean water waves which are nonlinear in nature.In shallow water,the linearization of the equations imposes severe conditions on wave amplitude than it does in deep water,and the strong nonlinear effects are observed.In this paper,q-homotopy analysis Laplace transform scheme is used to inspect time dependent nonlinear Lane-Emden type equation of arbitrary order.It offers the solution in a fast converging series.The uniqueness and convergence analysis of the considered model is presented.The given examples confirm the competency as well as accuracy of the presented scheme.The behavior of obtained solution for distinct orders of fractional derivative is dis-cussed through graphs.The auxiliary parameter¯h offers a suitable mode of handling the region of con-vergence.The outcomes reveal that the q-HATM is attractive,reliable,efficient and very effective.展开更多
基金This research is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R195),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Image enhancement is an important preprocessing task as the contrast is low in most of the medical images,Therefore,enhancement becomes the mandatory process before actual image processing should start.This research article proposes an enhancement of the model-based differential operator for the images in general and Echocardiographic images,the proposed operators are based on Grunwald-Letnikov(G-L),Riemann-Liouville(R-L)and Caputo(Li&Xie),which are the definitions of fractional order calculus.In this fractional-order,differentiation is well focused on the enhancement of echocardiographic images.This provoked for developing a non-linear filter mask for image enhancement.The designed filter is simple and effective in terms of improving the contrast of the input low contrast images and preserving the textural features,particularly in smooth areas.The novelty of the proposed method involves a procedure of partitioning the image into homogenous regions,details,and edges.Thereafter,a fractional differential mask is appropriately chosen adaptively for enhancing the partitioned pixels present in the image.It is also incorporated into the Hessian matrix with is a second-order derivative for every pixel and the parameters such as average gradient and entropy are used for qualitative analysis.The wide range of existing state-of-the-art techniques such as fixed order fractional differential filter for enhancement,histogram equalization,integer-order differential methods have been used.The proposed algorithm resulted in the enhancement of the input images with an increased value of average gradient as well as entropy in comparison to the previous methods.The values obtained are very close(almost equal to 99.9%)to the original values of the average gradient and entropy of the images.The results of the simulation validate the effectiveness of the proposed algorithm.
文摘In this paper, two numerical methods are proposed for solving distributed-order fractional Bagley-Torvik equation.This equation is used in modeling the motion of a rigid plate immersed in a Newtonian fluid with respect to the nonnegative density function. Using the composite Boole's rule the distributedorder Bagley-Torvik equation is approximated by a multi-term time-fractional equation, which is then solved by the GrunwaldLetnikov method(GLM) and the fractional differential transform method(FDTM). Finally, we compared our results with the exact results of some cases and show the excellent agreement between the approximate result and the exact solution.
基金This research was supported by National Natural Science Foundation of China(Nos.11901135,11961009)Foundation of Guizhou Science and Technology Department(Nos.[2020]1Y015,[2017]1086)+1 种基金The first author would like to acknowledge the financial support by the China Scholarship Council(201708525037)The second author was supported by the Academic Research Fund of the Ministry of Education of Singapore under grant No.R-146-000-305-114.
文摘We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative.The method is developed by dividing the domain into a number of subintervals,and applying the quadratic interpolation on each subinterval.The method is shown to be unconditionally stable,and for general nonlinear equations,the uniform sharp numerical order 3−νcan be rigorously proven for sufficiently smooth solutions at all time steps.The proof provides a gen-eral guide for proving the sharp order for higher-order schemes in the nonlinear case.Some numerical examples are given to validate our theoretical results.
基金supported by Council of Scientific and Industrial Research,Extramural Research Division,Pusa,New Delhi,India(25/(0217)/13/EMR-Ⅱ)
文摘In this paper,sufficient conditions are formulated for controllability of fractional order stochastic differential inclusions with fractional Brownian motion(f Bm) via fixed point theorems,namely the Bohnenblust-Karlin fixed point theorem for the convex case and the Covitz-Nadler fixed point theorem for the nonconvex case.The controllability Grammian matrix is defined by using Mittag-Leffler matrix function.Finally,a numerical example is presented to illustrate the efficiency of the obtained theoretical results.
文摘The study of dynamic behaviour of nonlinear models that arise in ocean engineering play a vital role in our daily life.There are many examples of ocean water waves which are nonlinear in nature.In shallow water,the linearization of the equations imposes severe conditions on wave amplitude than it does in deep water,and the strong nonlinear effects are observed.In this paper,q-homotopy analysis Laplace transform scheme is used to inspect time dependent nonlinear Lane-Emden type equation of arbitrary order.It offers the solution in a fast converging series.The uniqueness and convergence analysis of the considered model is presented.The given examples confirm the competency as well as accuracy of the presented scheme.The behavior of obtained solution for distinct orders of fractional derivative is dis-cussed through graphs.The auxiliary parameter¯h offers a suitable mode of handling the region of con-vergence.The outcomes reveal that the q-HATM is attractive,reliable,efficient and very effective.