In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniq...In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniqueness of solutions for fractional differential equations with multiple delays. Using the theorem, we discuss the fractional chaos neuron model.展开更多
In this paper,a new and general existence and uniqueness theorem of almost automorphic mild solutions is obtained for some fractional delay differential equations,using sectorial operators and the Banach contraction p...In this paper,a new and general existence and uniqueness theorem of almost automorphic mild solutions is obtained for some fractional delay differential equations,using sectorial operators and the Banach contraction principle.展开更多
In this paper, we investigate the nonlinear neutral fractional integral-differential equation involving conformable fractional derivative and integral. First of all, we give the form of the solution by lemma. Furtherm...In this paper, we investigate the nonlinear neutral fractional integral-differential equation involving conformable fractional derivative and integral. First of all, we give the form of the solution by lemma. Furthermore, existence results for the solution and sufficient conditions for uniqueness solution are given by the Leray-Schauder nonlinear alternative and Banach contraction mapping principle. Finally, an example is provided to show the application of results.展开更多
By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the res...By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.展开更多
In this paper, we consider the existence of mild solution to a class of neutral fractional differential equations with infinite delay. By means of fixed points methods, we obtain some sufficient conditions for the exi...In this paper, we consider the existence of mild solution to a class of neutral fractional differential equations with infinite delay. By means of fixed points methods, we obtain some sufficient conditions for the existence and uniqueness of mild solutions, which extend some known results.展开更多
In this paper,we investigate the dependence of the solutions on the parameters(order,initial function,right-hand function)of fractional delay differential equations(FDDEs)with the Caputo fractional derivative.Some res...In this paper,we investigate the dependence of the solutions on the parameters(order,initial function,right-hand function)of fractional delay differential equations(FDDEs)with the Caputo fractional derivative.Some results including an estimate of the solutions of FDDEs are given respectively.Theoretical results are verified by some numerical examples.展开更多
We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transf...We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.展开更多
文摘In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniqueness of solutions for fractional differential equations with multiple delays. Using the theorem, we discuss the fractional chaos neuron model.
基金supported by the NNSF of China (Grant No.11026098,11026150 and11171191)
文摘In this paper,a new and general existence and uniqueness theorem of almost automorphic mild solutions is obtained for some fractional delay differential equations,using sectorial operators and the Banach contraction principle.
文摘In this paper, we investigate the nonlinear neutral fractional integral-differential equation involving conformable fractional derivative and integral. First of all, we give the form of the solution by lemma. Furthermore, existence results for the solution and sufficient conditions for uniqueness solution are given by the Leray-Schauder nonlinear alternative and Banach contraction mapping principle. Finally, an example is provided to show the application of results.
文摘By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.
基金financed by NSF of Anhui Province (090416237)NNSF of China (10971229)+4 种基金the 211 Project of Anhui University (02303129 KJTD002B)the Foundation of Anhui Education Bureau(KJ2009A49 KJ2009AZ005)Research Fund for the Doctoral Program of Higher Education(20103401120002)
文摘In this paper, we consider the existence of mild solution to a class of neutral fractional differential equations with infinite delay. By means of fixed points methods, we obtain some sufficient conditions for the existence and uniqueness of mild solutions, which extend some known results.
基金This work is supported by the NSF of China projects(No.10971175,10871207)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20094301110001)+1 种基金NSF of Hunan Province(No.09JJ3002,10JJ7001)the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province of China,and NSF of Guangdong Province(No.10151601501000003).
文摘In this paper,we investigate the dependence of the solutions on the parameters(order,initial function,right-hand function)of fractional delay differential equations(FDDEs)with the Caputo fractional derivative.Some results including an estimate of the solutions of FDDEs are given respectively.Theoretical results are verified by some numerical examples.
基金Acknowledgements The authors would like to thank the referees for helpful suggestions which allowed them to improve the presentation of this paper. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11271093) and the Science Research Project of Hubei Provincial Department Of Education (No. Q20141306).
文摘We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.