期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Exact solutions for nonlinear partial fractional differential equations 被引量:21
1
作者 Khaled A.Gepreel Saleh Omran 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期32-38,共7页
′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion func... ′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations. 展开更多
关键词 fractional calculus complex transformation modified Riemann-Liouville derivative im- proved (G′/G)-expansion function method
下载PDF
Traveling wave solutions to some nonlinear fractional partial differential equations through the rational(G'/G)-expansion method 被引量:5
2
作者 Tarikul Islam M.Ali Akbar Abul Kalam Azad 《Journal of Ocean Engineering and Science》 SCIE 2018年第1期76-81,共6页
In this article,the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regu-larized long wave(SRLW)equation are successfully examined by the recently estab... In this article,the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regu-larized long wave(SRLW)equation are successfully examined by the recently established rational(G/G)-expansion method.The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform.Consequently,the theories of the ordinary differential equations are implemented effectively.Three types closed form traveling wave solutions,such as hyper-bolic function,trigonometric function and rational,are constructed by using the suggested method in the sense of conformable fractional derivative.The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel.It is observed that the performance of the rational(G/G)-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order. 展开更多
关键词 Nonlinear space-time fractional equations Nonlinear fractional complex transformation Conformable fractional derivative Exact solutions
原文传递
一类空时分数阶混合(1+1)维KdV方程的精确解 被引量:4
3
作者 李林芳 舒级 文慧霞 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期912-916,共5页
本文考虑一类具有修正Riemann-Liouville分数阶导数的空时分数阶混合(1+1)维KdV方程.利用分数阶复变换,本文将非线性分数阶偏微分方程转化为非线性常微分方程,然后应用首次积分法和Maple软件得到了该方程的精确解.
关键词 修正RiemannGLiouville分数阶导数 首次积分法 分数阶复变换 空时分数阶混合KdV方程
下载PDF
(3+1)维时空分数阶mKdV-Zakharov-Kuznetsov方程的分支及解结构 被引量:1
4
作者 王美 孙峪怀 《四川师范大学学报(自然科学版)》 CAS 2023年第4期457-463,共7页
通过动力系统分支理论构建(3+1)维时空分数阶mKdV-Zakharov-Kuznetsov方程的精确解.首先通过引入分数阶复变换将(3+1)维时空分数阶mKdV-Zakharov-Kuznetsov方程化为常微分方程组,然后借助Hamilton系统得到不同条件下的分支相图,最后根... 通过动力系统分支理论构建(3+1)维时空分数阶mKdV-Zakharov-Kuznetsov方程的精确解.首先通过引入分数阶复变换将(3+1)维时空分数阶mKdV-Zakharov-Kuznetsov方程化为常微分方程组,然后借助Hamilton系统得到不同条件下的分支相图,最后根据分支相图给予不同演化轨道,构建演化方程的一系列精确解,这些精确解包含双曲函数解、Jacobi椭圆函数解和三角函数解. 展开更多
关键词 mKdV-Zakharov-Kuznetsov方程 精确解 分数阶复变换 分支相图
下载PDF
New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics 被引量:2
5
作者 姚若侠 王伟 陈听华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第11期689-696,共8页
Motivated by the widely used ans¨atz method and starting from the modified Riemann–Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional pa... Motivated by the widely used ans¨atz method and starting from the modified Riemann–Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper. 展开更多
关键词 modified Riemann–Liouville DERIVATIVE fractional complex transformation nonlinear space-and time-fractional partial differential equations TRAVELING wave solution
原文传递
扩展的辅助函数法求一类非线性分数阶偏微分方程的精确解 被引量:3
6
作者 张静 《淮北师范大学学报(自然科学版)》 CAS 2021年第4期12-17,共6页
为进一步扩大解的范围,丰富解的结构.文章在前人运用的辅助函数法的基础上做推广,将辅助函数满足的方程扩展到满足一般的Riccati方程上,并借助分数阶复变换和整合的分数阶导数的性质,将该方法运用到求解时间分数阶modified Benjamin-Bon... 为进一步扩大解的范围,丰富解的结构.文章在前人运用的辅助函数法的基础上做推广,将辅助函数满足的方程扩展到满足一般的Riccati方程上,并借助分数阶复变换和整合的分数阶导数的性质,将该方法运用到求解时间分数阶modified Benjamin-Bona-Mahony(简称mBBM)方程以及(3+1)维非线性分数阶Jimbo-Miwa方程,获得这2个方程的许多新精确行波解. 展开更多
关键词 分数阶复变换 扩展的辅助函数法 时间分数阶mBBM方程 (3+1)维非线性分数阶Jimbo-Miwa方程 精确行波解
下载PDF
A New Approach for the Exact Solutions of Nonlinear Equations of Fractional Order via Modified Simple Equation Method 被引量:1
7
作者 Muhammad Younis 《Applied Mathematics》 2014年第13期1927-1932,共6页
In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex trans... In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential equations into nonlinear ordinary differential equations. Afterwards, modified simple equation method has been implemented, to find the exact solutions of these equations, in the sense of modified Riemann-Liouville derivative. For applications, the exact solutions of time-space fractional derivative Burgers’ equation and time-space fractional derivative foam drainage equation have been discussed. Moreover, it can also be concluded that the proposed method is easy, direct and concise as compared to other existing methods. 展开更多
关键词 Exact Solutions complex transformation MODIFIED SIMPLE EQUATION METHOD Nonlinear Equations of fractional Order fractional Calculus Theory
下载PDF
Exact Solutions for Fractional Differential-Difference Equations by an Extended Riccati Sub-ODE Method 被引量:2
8
作者 冯青华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第5期521-527,共7页
In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional co... In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established. 展开更多
关键词 fractional differential-difference equations exact solutions Riccati sub-ODE method fractional complex transformation
原文传递
(3+1)维空时分数阶Yu-Toda-Sasa-Fukuyama方程的新精确解 被引量:1
9
作者 黄春 孙峪怀 《沈阳大学学报(自然科学版)》 CAS 2020年第6期530-534,共5页
借助修正的Riemann-Liouville分数阶导数,基于扩展的(G′/G)-展开法得到(3+1)维空时分数阶Yu-Toda-Sasa-Fukuyama方程的新精确解,其中包括双曲函数解、三角函数解和有理函数解,丰富了其精确解解系.
关键词 分数阶方程 分数阶导数 分数阶复变换 (G′/G)-展开法 精确解
下载PDF
一致分数阶导数意义下NLS方程和CNLS方程的精确解
10
作者 陈进华 高云龙 《数学的实践与认识》 2022年第11期209-215,共7页
在一致分数阶导数意义下,利用新的复变换研究了二阶NLS方程和CNLS方程,得到了两类带约束条件的薛定谔方程复值函数形式的新精确解.通过图像模拟,给出了两类方程的精确解在特定参数条件下随时间和空间变化的模值函数三维坐标图,实部三维... 在一致分数阶导数意义下,利用新的复变换研究了二阶NLS方程和CNLS方程,得到了两类带约束条件的薛定谔方程复值函数形式的新精确解.通过图像模拟,给出了两类方程的精确解在特定参数条件下随时间和空间变化的模值函数三维坐标图,实部三维坐标图和虚部三维坐标图. 展开更多
关键词 一致分数阶导数 精确解 复变换 NLS方程 CNLS方程
原文传递
An analytical method for space-time fractional nonlinear differential equations arising in plasma physics 被引量:1
11
作者 Mohamed Aly Abdou 《Journal of Ocean Engineering and Science》 SCIE 2017年第4期288-292,共5页
Here,a new fractional sub-equation method with a fractional complex transform is proposed for constructing exact solutions of fractional partial differential equations arising in plasma physics in the sense of modifie... Here,a new fractional sub-equation method with a fractional complex transform is proposed for constructing exact solutions of fractional partial differential equations arising in plasma physics in the sense of modified Riemann-Liouville derivative,which is the fractional version of the known D_(ξ)^(α)G(ξ)/G(ξ)method.To illustrate the validity of this method,we apply it to the space-time fractional KdV equation on the dust ion acoustic waves in dusty plasma and space-time Boussinesq fractional equation.The proposed approach is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.The solutions obtained here are new and have not been reported in former literature. 展开更多
关键词 New frcational subequation method fractional complex transformation Riemann-Liouville derivative Exact solutions
原文传递
广义时间分数阶Hirota-Satsuma耦合KdV系统新的精确解
12
作者 王苗苗 姚若侠 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期22-31,共10页
借助复杂分数阶变换和修正的Jumarie Riemann-Liouville分数阶导数,利用一个二阶常微分方程的解,基于G′/G有限级数展开法,对耦合的非线性广义时间分数阶Hirota-Satsuma-KdV系统进行研究,由此获得了该系统的若干双曲函数和三角函数形式... 借助复杂分数阶变换和修正的Jumarie Riemann-Liouville分数阶导数,利用一个二阶常微分方程的解,基于G′/G有限级数展开法,对耦合的非线性广义时间分数阶Hirota-Satsuma-KdV系统进行研究,由此获得了该系统的若干双曲函数和三角函数形式精确解,丰富了其精确解系。 展开更多
关键词 分数阶复杂变换 广义时间分数阶Hirota-Satsuma-KdV系统 G′/G级数展开法 Jumarie Riemann-Liouville导数 精确解
下载PDF
时空分数阶Cahn-Hilliard方程新的精确解
13
作者 赖晓霞 姚若侠 《渭南师范学院学报》 2017年第12期10-20,共11页
借助Jumarie修正的Riemann-Liouville分数阶导数和分数阶复变换,利用一个二阶非线性常微分方程的解,基于(G'/G)-展开法,对时空分数阶Cahn-Hilliard方程进行研究,由此构造了该方程的若干双曲函数、三角函数和有理函数等不同形式的精... 借助Jumarie修正的Riemann-Liouville分数阶导数和分数阶复变换,利用一个二阶非线性常微分方程的解,基于(G'/G)-展开法,对时空分数阶Cahn-Hilliard方程进行研究,由此构造了该方程的若干双曲函数、三角函数和有理函数等不同形式的精确解,丰富了其精确解解系。此外,当其中的参数被赋予某些特殊值时,这些已获得的精确解则成为孤立波解、周期波解和行波解。结果表明,(G'/G)-展开法直接、简洁、高效,且具有一定的普适性,为数学物理领域其他非线性偏微分方程的求解提供了一种强有力的工具。 展开更多
关键词 Jumarie修正的Riemann-Liouville分数阶导数 (G'/G)-展开法 分数阶复变换 时空分数阶Cahn-Hilliard方程 精确解
下载PDF
Counterexample of Local Fractional Order Chain Rule and Modified Definition of Local Fractional Order
14
作者 FAN Kai ZHOU Cunlong 《Journal of Donghua University(English Edition)》 EI CAS 2020年第6期521-525,共5页
Fractional calculus is a powerful tool for modeling nonlinear systems.It is necessary to discuss the basic properties of fractional order before solving a fractional order model.Using the formula of power function def... Fractional calculus is a powerful tool for modeling nonlinear systems.It is necessary to discuss the basic properties of fractional order before solving a fractional order model.Using the formula of power function defined by local fractional derivative and the chain rule to calculate a compound function,the results are inconsistent.This shows that the chain rule of local fractional derivatives similar to classical calculus is suspicious,and fractional complex transformation based on the chain rule is also suspicious and needs further discussion.In order to overcome this inconsistency,an improved definition of local fractional derivative,which can be regarded as a fractal derivative,is proposed based on the results derived from the relationship between the mass function and the Hausdorff measure. 展开更多
关键词 local fractional order chain rule fractional complex transformation fractal derivative
下载PDF
A New Fractional Projective Riccati Equation Method for Solving Fractional Partial Differential Equations 被引量:8
15
作者 冯青华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第8期167-172,共6页
In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann–Liouville derivative. This me... In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann–Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method,we apply this method to solve the space-time fractional Whitham–Broer–Kaup(WBK) equations and the nonlinear fractional Sharma–Tasso–Olever(STO) equation, and as a result, some new exact solutions for them are obtained. 展开更多
关键词 fractional PROJECTIVE RICCATI EQUATION METHOD fractional partial differential EQUATIONS exact solutions nonlinear fractional complex transformation fractional Whitham–Broer–Kaup EQUATIONS fractional Sharma–Tasso–Olever EQUATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部