Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different ...Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.展开更多
Isoperimetric problems consist in minimizing or maximizing a cost functional subject to an integral constraint.In this work, we present two fractional isoperimetric problems where the Lagrangian depends on a combined ...Isoperimetric problems consist in minimizing or maximizing a cost functional subject to an integral constraint.In this work, we present two fractional isoperimetric problems where the Lagrangian depends on a combined Caputo derivative of variable fractional order and we present a new variational problem subject to a holonomic constraint. We establish necessary optimality conditions in order to determine the minimizers of the fractional problems. The terminal point in the cost integral,as well as the terminal state, are considered to be free, and we obtain corresponding natural boundary conditions.展开更多
The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations wit...The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.展开更多
In this article, we study isoperimetric problems of the calculus of variations with left and right Riemann-Liouville fractional derivatives. Both situations when the lower bound of the variational integrals coincide a...In this article, we study isoperimetric problems of the calculus of variations with left and right Riemann-Liouville fractional derivatives. Both situations when the lower bound of the variational integrals coincide and do not coincide with the lower bound of the fractional derivatives are considered.展开更多
基金supported by CNPq and CAPES(Brazilian research funding agencies)Portuguese funds through the Center for Research and Development in Mathematics and Applications(CIDMA)the Portuguese Foundation for Science and Technology(FCT),within project UID/MAT/04106/2013
文摘Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.
基金supported by Portuguese Funds through the Center for Research and Development in Mathematics and Applications(CIDMA)the Portuguese Foundation for Science and Technology(FCT)(UID/MAT/04106/2013)supported by FCT through the Ph.D. fellowship SFRH/BD/42557/2007
文摘Isoperimetric problems consist in minimizing or maximizing a cost functional subject to an integral constraint.In this work, we present two fractional isoperimetric problems where the Lagrangian depends on a combined Caputo derivative of variable fractional order and we present a new variational problem subject to a holonomic constraint. We establish necessary optimality conditions in order to determine the minimizers of the fractional problems. The terminal point in the cost integral,as well as the terminal state, are considered to be free, and we obtain corresponding natural boundary conditions.
基金National Natural Science Foundations of China(Nos.11572212,11272227,10972151)the Innovation Program for Scientific Research of Nanjing University of Science and Technology,Chinathe Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(No.KYLX15_0405)
文摘The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.
基金supported by FEDER funds through COMPETE - Operational Programme Factors of Competitiveness("Programa Operacional Factores de Competitividade")Portuguese funds through the Center for Research and Development in Mathematics and Applications(University of Aveiro) and the Portuguese Foundation for Science and Technology("FCT - Fundao para a Ciencia e a Tecnologia"),within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690
文摘In this article, we study isoperimetric problems of the calculus of variations with left and right Riemann-Liouville fractional derivatives. Both situations when the lower bound of the variational integrals coincide and do not coincide with the lower bound of the fractional derivatives are considered.