′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion func...′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.展开更多
In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation,...In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.展开更多
In this article,the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regu-larized long wave(SRLW)equation are successfully examined by the recently estab...In this article,the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regu-larized long wave(SRLW)equation are successfully examined by the recently established rational(G/G)-expansion method.The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform.Consequently,the theories of the ordinary differential equations are implemented effectively.Three types closed form traveling wave solutions,such as hyper-bolic function,trigonometric function and rational,are constructed by using the suggested method in the sense of conformable fractional derivative.The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel.It is observed that the performance of the rational(G/G)-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order.展开更多
In order to cope with some difficulties due to the fact that the derivative of a constant is not zero with the commonly accepted Riemann-Liouville definition of fractional derivative, one (Jumarie) has proposed rece...In order to cope with some difficulties due to the fact that the derivative of a constant is not zero with the commonly accepted Riemann-Liouville definition of fractional derivative, one (Jumarie) has proposed recently an alternative referred to as (local) modified Riemann-Liouville definition, which directly, provides a Taylor's series of fractional order for non differentiable functions. We examine here in which way this calculus can be used as a framework for a differential geometry of fractional or- der. One will examine successively implicit function, manifold, length of curves, radius of curvature, Christoffel coefficients, velocity, acceleration. One outlines the application of this framework to La- grange optimization in mechanics, and one concludes with some considerations on a possible fractional extension of the pseudo-geodesic of thespecial relativity and of the Lorentz transformation.展开更多
For the limit fractional Volterra(LFV)hierarchy,we construct the n-fold Darboux transformation and the soliton solutions.Furthermore,we extend the LFV hierarchy to the noncommutative LFV(NCLFV)hierarchy,and construct ...For the limit fractional Volterra(LFV)hierarchy,we construct the n-fold Darboux transformation and the soliton solutions.Furthermore,we extend the LFV hierarchy to the noncommutative LFV(NCLFV)hierarchy,and construct the Darboux transformation expressed by quasi determinant of the noncommutative version.Meanwhile,we establish the relationship between new and old solutions of the NCLFV hierarchy.Finally,the quasi determinant solutions of the NCLFV hierarchy are obtained.展开更多
In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex trans...In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential equations into nonlinear ordinary differential equations. Afterwards, modified simple equation method has been implemented, to find the exact solutions of these equations, in the sense of modified Riemann-Liouville derivative. For applications, the exact solutions of time-space fractional derivative Burgers’ equation and time-space fractional derivative foam drainage equation have been discussed. Moreover, it can also be concluded that the proposed method is easy, direct and concise as compared to other existing methods.展开更多
We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transf...We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.展开更多
In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional co...In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established.展开更多
The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption...The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption effect of the fission product on the surface of the U02 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.展开更多
Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensiona...Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.展开更多
We study a stochastic control system involving both a standard and a fractional Brownian motion with Hurst parameter less than 1/2.We apply an anticipative Girsanov transformation to transform the system into another ...We study a stochastic control system involving both a standard and a fractional Brownian motion with Hurst parameter less than 1/2.We apply an anticipative Girsanov transformation to transform the system into another one,driven only by the standard Brownian motion with coefficients depending on both the fractional Brownian motion and the standard Brownian motion.We derive a maximum principle and the associated stochastic variational inequality,which both are generalizations of the classical case.展开更多
In this paper,the modified projective synchronization between two fractional-order chaotic systems with different dimensions is investigated.The added-order scheme and the reduced-order scheme are proposed,respectivel...In this paper,the modified projective synchronization between two fractional-order chaotic systems with different dimensions is investigated.The added-order scheme and the reduced-order scheme are proposed,respectively.Based on the Laplace transformation and feedback control theory,controllers are designed such that two chaotic systems with different dimensions could be synchronized asymptotically under the presented schemes.Corresponding numerical simulations are given to show the effectiveness of the proposed schemes.展开更多
This paper presents fractional generalized canonical transformations for fractional Birkhoffian systems within Caputo derivatives.Firstly,based on fractional Pfaff-Birkhoff principle within Caputo derivatives,fraction...This paper presents fractional generalized canonical transformations for fractional Birkhoffian systems within Caputo derivatives.Firstly,based on fractional Pfaff-Birkhoff principle within Caputo derivatives,fractional Birkhoff’s equations are derived and the basic identity of constructing generalized canonical transformations is proposed.Secondly,according to the fact that the generating functions contain new and old variables,four kinds of generating functions of the fractional Birkhoffian system are proposed,and four basic forms of fractional generalized canonical transformations are deduced.Then,fractional canonical transformations for fractional Hamiltonian system are given.Some interesting examples are finally listed.展开更多
The boundary value problem with a spectral parameter in the boundary conditions for a polynomial pencil of the Sturm-Liouville operator is investigated. Using the properties of the transformation operators for such op...The boundary value problem with a spectral parameter in the boundary conditions for a polynomial pencil of the Sturm-Liouville operator is investigated. Using the properties of the transformation operators for such operators, the asymptotic formulas for eigenvalues of the boundary value problem are obtained.展开更多
文摘′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.
文摘In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.
文摘In this article,the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regu-larized long wave(SRLW)equation are successfully examined by the recently established rational(G/G)-expansion method.The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform.Consequently,the theories of the ordinary differential equations are implemented effectively.Three types closed form traveling wave solutions,such as hyper-bolic function,trigonometric function and rational,are constructed by using the suggested method in the sense of conformable fractional derivative.The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel.It is observed that the performance of the rational(G/G)-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order.
文摘In order to cope with some difficulties due to the fact that the derivative of a constant is not zero with the commonly accepted Riemann-Liouville definition of fractional derivative, one (Jumarie) has proposed recently an alternative referred to as (local) modified Riemann-Liouville definition, which directly, provides a Taylor's series of fractional order for non differentiable functions. We examine here in which way this calculus can be used as a framework for a differential geometry of fractional or- der. One will examine successively implicit function, manifold, length of curves, radius of curvature, Christoffel coefficients, velocity, acceleration. One outlines the application of this framework to La- grange optimization in mechanics, and one concludes with some considerations on a possible fractional extension of the pseudo-geodesic of thespecial relativity and of the Lorentz transformation.
基金supported by the National Natural Science Foundation of China under Grant No.12071237KC Wong Magna Fund in Ningbo University。
文摘For the limit fractional Volterra(LFV)hierarchy,we construct the n-fold Darboux transformation and the soliton solutions.Furthermore,we extend the LFV hierarchy to the noncommutative LFV(NCLFV)hierarchy,and construct the Darboux transformation expressed by quasi determinant of the noncommutative version.Meanwhile,we establish the relationship between new and old solutions of the NCLFV hierarchy.Finally,the quasi determinant solutions of the NCLFV hierarchy are obtained.
文摘In this article, the modified simple equation method has been extended to celebrate the exact solutions of nonlinear partial time-space differential equations of fractional order. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential equations into nonlinear ordinary differential equations. Afterwards, modified simple equation method has been implemented, to find the exact solutions of these equations, in the sense of modified Riemann-Liouville derivative. For applications, the exact solutions of time-space fractional derivative Burgers’ equation and time-space fractional derivative foam drainage equation have been discussed. Moreover, it can also be concluded that the proposed method is easy, direct and concise as compared to other existing methods.
基金Acknowledgements The authors would like to thank the referees for helpful suggestions which allowed them to improve the presentation of this paper. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11271093) and the Science Research Project of Hubei Provincial Department Of Education (No. Q20141306).
文摘We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.
文摘In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established.
基金Supported by the National S&T Major Project under Grant No.ZX06901
文摘The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption effect of the fission product on the surface of the U02 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province,China (Grant No. 20082165)
文摘Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.
基金supported by National Natural Science Foundation of China(Grant No11301560)
文摘We study a stochastic control system involving both a standard and a fractional Brownian motion with Hurst parameter less than 1/2.We apply an anticipative Girsanov transformation to transform the system into another one,driven only by the standard Brownian motion with coefficients depending on both the fractional Brownian motion and the standard Brownian motion.We derive a maximum principle and the associated stochastic variational inequality,which both are generalizations of the classical case.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20093401120001)the Natural Science Foundation of Anhui Province(No.11040606M12)+1 种基金the Natural Science Foundation of Anhui Education Bureau(No.KJ2010A035)the 211 project of Anhui University(No.KJTD002B)。
文摘In this paper,the modified projective synchronization between two fractional-order chaotic systems with different dimensions is investigated.The added-order scheme and the reduced-order scheme are proposed,respectively.Based on the Laplace transformation and feedback control theory,controllers are designed such that two chaotic systems with different dimensions could be synchronized asymptotically under the presented schemes.Corresponding numerical simulations are given to show the effectiveness of the proposed schemes.
基金supported by the National Natural Science Foundations of China(Nos.11972241,11572212,11272227)the Natural Science Foundation of Jiangsu Province(No.BK20191454)。
文摘This paper presents fractional generalized canonical transformations for fractional Birkhoffian systems within Caputo derivatives.Firstly,based on fractional Pfaff-Birkhoff principle within Caputo derivatives,fractional Birkhoff’s equations are derived and the basic identity of constructing generalized canonical transformations is proposed.Secondly,according to the fact that the generating functions contain new and old variables,four kinds of generating functions of the fractional Birkhoffian system are proposed,and four basic forms of fractional generalized canonical transformations are deduced.Then,fractional canonical transformations for fractional Hamiltonian system are given.Some interesting examples are finally listed.
文摘The boundary value problem with a spectral parameter in the boundary conditions for a polynomial pencil of the Sturm-Liouville operator is investigated. Using the properties of the transformation operators for such operators, the asymptotic formulas for eigenvalues of the boundary value problem are obtained.