A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltoniansystems to fractional Gaussian noise (fGla) with the Hurst index 1/2〈H〈l is proposed. The average...A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltoniansystems to fractional Gaussian noise (fGla) with the Hurst index 1/2〈H〈l is proposed. The averaged stochastic differential equa-tions (SDEs) for the first integrals of the associated Hamiltonian system are derived. The dimension of averaged SDEs is less thanthat of the original system. The stationary probability density and statistics of the original system are obtained approximately fromsolving the averaged SDEs numerically. Two systems are worked out to illustrate the proposed stochastic averaging method. It isshown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of originalsystem agree well, and the computational time for the former results is less than that for the latter ones.展开更多
Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large ...Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large time-scale. This paper investigates the change of non-stationary self-similarity of network traffic over time,and proposes a method of combining the discrete wavelet transform (DWT) and Schwarz information criterion (SIC) to detect change points of self-similarity in network traffic. The traffic is segmented into pieces around changing points with homogenous characteristics for the Hurst parameter,named local Hurst parameter,and then each piece of network traffic is modeled using fractional Gaussian noise (FGN) model with the local Hurst parameter. The presented experimental performance on data set from the Internet Traffic Archive (ITA) demonstrates that the method is more accurate in describing the non-stationary self-similarity of network traffic.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11172259,11272279,11321202,and 11432012)
文摘A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltoniansystems to fractional Gaussian noise (fGla) with the Hurst index 1/2〈H〈l is proposed. The averaged stochastic differential equa-tions (SDEs) for the first integrals of the associated Hamiltonian system are derived. The dimension of averaged SDEs is less thanthat of the original system. The stationary probability density and statistics of the original system are obtained approximately fromsolving the averaged SDEs numerically. Two systems are worked out to illustrate the proposed stochastic averaging method. It isshown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of originalsystem agree well, and the computational time for the former results is less than that for the latter ones.
基金the National High Technology Research and Development Program (863) of China(Nos. 2005AA145110 and 2006AA01Z436)the Natural Science Foundation of Shanghai of China(No. 05ZR14083)the Pudong New Area Technology Innovation Public Service Platform of China(No. PDPT2005-04)
文摘Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large time-scale. This paper investigates the change of non-stationary self-similarity of network traffic over time,and proposes a method of combining the discrete wavelet transform (DWT) and Schwarz information criterion (SIC) to detect change points of self-similarity in network traffic. The traffic is segmented into pieces around changing points with homogenous characteristics for the Hurst parameter,named local Hurst parameter,and then each piece of network traffic is modeled using fractional Gaussian noise (FGN) model with the local Hurst parameter. The presented experimental performance on data set from the Internet Traffic Archive (ITA) demonstrates that the method is more accurate in describing the non-stationary self-similarity of network traffic.