In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. Ther...In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. There are three sub-cases of basal detachment for the rigid body model: horizontal detachment, antithetic detachment and synthetic detachment. For the rigid body model, the established equations indicate that the total displacement on the synthetic base (D<sub>t2</sub>) is the largest, that on the horizontal base (D<sub>t1</sub>) is moderate, and that on the antithetic base (D<sub>t3</sub>) is the smallest. On the other hand, the value of (D<sub>t1</sub>) is larger than the displacement for the vertical shear (D<sub>t4</sub>). The value of (D<sub>t1</sub>) is larger than or less than the displacement for the inclined shear (D<sub>t5</sub>) depending on the original fault dip δ<sub>0</sub>, bedding angle θ, and the angle of shear direction β. For all original parameters, the value of D<sub>t5</sub> is less than the value of D<sub>t4</sub>. Also, by comparing three rotation mechanisms, we find that the inclined shear produces largest extension, the rigid body model with horizontal detachment produces the smallest extension, and the vertical shear model produces moderate extension.展开更多
Friction stir brazing with ultrahigh rotation speed was applied to 6061 aluminium alloy–pure copper lap joints with the aid of zinc foil.The effects of different shoulder diameters from 7 to 15 mm on the microstructu...Friction stir brazing with ultrahigh rotation speed was applied to 6061 aluminium alloy–pure copper lap joints with the aid of zinc foil.The effects of different shoulder diameters from 7 to 15 mm on the microstructure and mechanical properties of Al/Cu FSB joints were investigated along with the temperature and resistance of the friction tool.The oscillation of forward resistance and lateral force was related to the flow of the plastic metal and contributed to obtain a good appearance during the welding process.From the appearance of the welded joints,it was obvious that the phase difference between the forward resistance and lateral force had a significant influence on the joint characteristics.Obvious scale-like ripples appeared on the weld area when a sharp angle in the phase difference curve existed.Additionally,with a lower axial force and oscillation assistance,a satisfactory joint could be obtained.The results of the shear strength of the brazed joint showed that the shoulder with a 12 mm diameter yielded the highest shear strength.Meanwhile,the zinc foil in the middle melted completely and formed finely dispersed CuZn5 Al–Zn eutectic structures at the Al–Cu interface.展开更多
In this paper,a novel parallel mechanism which can be used to evaluate body-to-bogie yawtorque is proposed.It can satisfy experimental testing for rotation resistance coefficient(RRC) with various types of bogies,diff...In this paper,a novel parallel mechanism which can be used to evaluate body-to-bogie yawtorque is proposed.It can satisfy experimental testing for rotation resistance coefficient(RRC) with various types of bogies,different rotational speeds,and different states of air spring.Aiming at the problem that computing speed of Newton iterative method for solving rotational angle is incompetence to meet the real-time requirements,and also that other methods adopting physical device such as laser displacement sensor to solve rotational angle possess larger measurement error,the analytical techniques method used for solving rotational angle is presented.Finally,by using the upper-single-6-DOF motion platform as an authentic urging mean to simulate a real vehicle,the test was carried out under the speeds of 0.2 and 1.0(°)/s,with the air spring at the inflated and deflated states,respectively.The results showthat the RRC of the bogie under various conditions is less than 0.06,which meets the standard requirement EN-14363.It was also found that the speed of vehicles moving along curves and the state of air spring were key factors influencing the RRC.The feasibilities of this model and test method are verified in this study.展开更多
文摘In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. There are three sub-cases of basal detachment for the rigid body model: horizontal detachment, antithetic detachment and synthetic detachment. For the rigid body model, the established equations indicate that the total displacement on the synthetic base (D<sub>t2</sub>) is the largest, that on the horizontal base (D<sub>t1</sub>) is moderate, and that on the antithetic base (D<sub>t3</sub>) is the smallest. On the other hand, the value of (D<sub>t1</sub>) is larger than the displacement for the vertical shear (D<sub>t4</sub>). The value of (D<sub>t1</sub>) is larger than or less than the displacement for the inclined shear (D<sub>t5</sub>) depending on the original fault dip δ<sub>0</sub>, bedding angle θ, and the angle of shear direction β. For all original parameters, the value of D<sub>t5</sub> is less than the value of D<sub>t4</sub>. Also, by comparing three rotation mechanisms, we find that the inclined shear produces largest extension, the rigid body model with horizontal detachment produces the smallest extension, and the vertical shear model produces moderate extension.
文摘Friction stir brazing with ultrahigh rotation speed was applied to 6061 aluminium alloy–pure copper lap joints with the aid of zinc foil.The effects of different shoulder diameters from 7 to 15 mm on the microstructure and mechanical properties of Al/Cu FSB joints were investigated along with the temperature and resistance of the friction tool.The oscillation of forward resistance and lateral force was related to the flow of the plastic metal and contributed to obtain a good appearance during the welding process.From the appearance of the welded joints,it was obvious that the phase difference between the forward resistance and lateral force had a significant influence on the joint characteristics.Obvious scale-like ripples appeared on the weld area when a sharp angle in the phase difference curve existed.Additionally,with a lower axial force and oscillation assistance,a satisfactory joint could be obtained.The results of the shear strength of the brazed joint showed that the shoulder with a 12 mm diameter yielded the highest shear strength.Meanwhile,the zinc foil in the middle melted completely and formed finely dispersed CuZn5 Al–Zn eutectic structures at the Al–Cu interface.
基金National Natural Science Foundation of China(No.51575232)Jilin University Youth Science and Technology Innovation Fund,China(No.450060507032)
文摘In this paper,a novel parallel mechanism which can be used to evaluate body-to-bogie yawtorque is proposed.It can satisfy experimental testing for rotation resistance coefficient(RRC) with various types of bogies,different rotational speeds,and different states of air spring.Aiming at the problem that computing speed of Newton iterative method for solving rotational angle is incompetence to meet the real-time requirements,and also that other methods adopting physical device such as laser displacement sensor to solve rotational angle possess larger measurement error,the analytical techniques method used for solving rotational angle is presented.Finally,by using the upper-single-6-DOF motion platform as an authentic urging mean to simulate a real vehicle,the test was carried out under the speeds of 0.2 and 1.0(°)/s,with the air spring at the inflated and deflated states,respectively.The results showthat the RRC of the bogie under various conditions is less than 0.06,which meets the standard requirement EN-14363.It was also found that the speed of vehicles moving along curves and the state of air spring were key factors influencing the RRC.The feasibilities of this model and test method are verified in this study.