Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by diff...Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guidance force of a new type of three magnetic hills of permanent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation performance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.展开更多
It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF...It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF) is used for obstacle avoidance as an online method. However, classical GF has shortcoming in generating orbit for UAV with high velocity because the GF results in a time- varying turning radius. Modified gyroscopic force (MGF) given by function of velocity can overcome this shortcoming and help get a more practical control law for avoidance. MGF can also be used to implement the guidance of UAV by designing particular active conditions. Interactions in forms of stress function and damping force are introduced so that an UAV group can have coordinated motion. By combining controls of MGF and interactions, motion planning of UAV group in obstacle environ- ment can be implemented.展开更多
基金supported by the National Magnetic Confinement Fusion Science Program (2011GB112001)the Program of International S&T Cooperation (S2013ZR0595)+2 种基金the National Natural Science Foundation of China (No. 51271155)the Fundamental Research Funds for the Central Universities (SWJTU11CX073, SWJTU11ZT16 and SWJTU11ZT31)the Science Foundation of Sichuan Province (2011JY0031 and 2011JY0130)
文摘Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guidance force of a new type of three magnetic hills of permanent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation performance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.
基金Supported by the National Natural Science Foundation of China(61350010)
文摘It is comment that unmanned aerial vehicles (UAVs) have limitation on information cap- turing in reality applications. Therefore, online method of motion planning is necessary for such UA- Vs. Gyroscopic force (GF) is used for obstacle avoidance as an online method. However, classical GF has shortcoming in generating orbit for UAV with high velocity because the GF results in a time- varying turning radius. Modified gyroscopic force (MGF) given by function of velocity can overcome this shortcoming and help get a more practical control law for avoidance. MGF can also be used to implement the guidance of UAV by designing particular active conditions. Interactions in forms of stress function and damping force are introduced so that an UAV group can have coordinated motion. By combining controls of MGF and interactions, motion planning of UAV group in obstacle environ- ment can be implemented.