Numerical simulation based on phase field method is performed to describe solidification process of pure material in a free or forced flow. The evolution of the interface is showed, and the effects of mesh grid and fl...Numerical simulation based on phase field method is performed to describe solidification process of pure material in a free or forced flow. The evolution of the interface is showed, and the effects of mesh grid and flow velocity on succinonitrite shape are studied. These results indicate that crystal grows into an equiaxial dendrite in a free flow and into an asymmetrical dendritic in a forced flow. With increasing flow velocity, the upstream dendritic arm tip grows faster and the downstream arm grows slower. However, the evolution of the perpendicular tip has no significant change. In addition, mesh grid has no influence on dendritic growth shape when mesh grid is above 300×300.展开更多
The phase-field model coupled with a flow field was used to simulate the solidification of pure materials by the finite difference method. The effects of initial crystal radius, the space step and the interface thickn...The phase-field model coupled with a flow field was used to simulate the solidification of pure materials by the finite difference method. The effects of initial crystal radius, the space step and the interface thickness on the dendrite growth were studied. Results indicate that the grain grows into an equiaxial dendrite during free flow and into a typical branched structure under forced flow. The radius of an initial crystal can affect the growth of side-branches but not the stability of the dendrite's tip when an appropriate value is assigned to it. With an increase in space steps, side-branches appear at the upstream of the longitudinal principal branch and they grow rapidly. With an increase in the interface thickness, the trunk of the longitudinal upstream and lateral principal branches grow longer and become more slender while the number of secondary branches increases.展开更多
基金supported by the Major Program of the National Natural Science Foundation of China (Nos.50331040 and 60171034).
文摘Numerical simulation based on phase field method is performed to describe solidification process of pure material in a free or forced flow. The evolution of the interface is showed, and the effects of mesh grid and flow velocity on succinonitrite shape are studied. These results indicate that crystal grows into an equiaxial dendrite in a free flow and into an asymmetrical dendritic in a forced flow. With increasing flow velocity, the upstream dendritic arm tip grows faster and the downstream arm grows slower. However, the evolution of the perpendicular tip has no significant change. In addition, mesh grid has no influence on dendritic growth shape when mesh grid is above 300×300.
基金supported by a Program of the Lanzhou Science and Technology Bureau (No.2009-1-9)the Doctoral Fund of Lanzhou University of Technology(No.SB01200606)
文摘The phase-field model coupled with a flow field was used to simulate the solidification of pure materials by the finite difference method. The effects of initial crystal radius, the space step and the interface thickness on the dendrite growth were studied. Results indicate that the grain grows into an equiaxial dendrite during free flow and into a typical branched structure under forced flow. The radius of an initial crystal can affect the growth of side-branches but not the stability of the dendrite's tip when an appropriate value is assigned to it. With an increase in space steps, side-branches appear at the upstream of the longitudinal principal branch and they grow rapidly. With an increase in the interface thickness, the trunk of the longitudinal upstream and lateral principal branches grow longer and become more slender while the number of secondary branches increases.