Endothelium is the interior layer of an artery made up of tremendous number of endothelial cells which are located side by side. Finding the effective parameters that cause the cells to obtain mechanical strength in d...Endothelium is the interior layer of an artery made up of tremendous number of endothelial cells which are located side by side. Finding the effective parameters that cause the cells to obtain mechanical strength in different morphologies is an important issue in cell biomechanics. In this work a numerical model for a single endothelial cell is developed. This model includes cell’s plasma membrane and nucleus using the traingular network of spectrin level approach. Cy-toskeleton main components such as intermediate and actin filaments as well as microtubules are the other important subsets of the simulated model. Mass and spring theory is utilized in cytoskeleton components simulation. A spreading model is applied on the cell in order to simulate the adhesion on a substrate and test the model’s qualitative performance and the result is verified by the experiment. Also deformation of the cell caused by an external compressive force is another quantitative test which is predicted by the model and the results are validated with an experimental AFM test. The two most popular morphologies of the cells resulted from this work are the cell suspension morphology which is the result of no external forces and the cell adherent morphology which is the result of cell adhesion to the extracellular matrix. The mechanical stiffness of the endothelial cell is obtained in this simulation.展开更多
文摘Endothelium is the interior layer of an artery made up of tremendous number of endothelial cells which are located side by side. Finding the effective parameters that cause the cells to obtain mechanical strength in different morphologies is an important issue in cell biomechanics. In this work a numerical model for a single endothelial cell is developed. This model includes cell’s plasma membrane and nucleus using the traingular network of spectrin level approach. Cy-toskeleton main components such as intermediate and actin filaments as well as microtubules are the other important subsets of the simulated model. Mass and spring theory is utilized in cytoskeleton components simulation. A spreading model is applied on the cell in order to simulate the adhesion on a substrate and test the model’s qualitative performance and the result is verified by the experiment. Also deformation of the cell caused by an external compressive force is another quantitative test which is predicted by the model and the results are validated with an experimental AFM test. The two most popular morphologies of the cells resulted from this work are the cell suspension morphology which is the result of no external forces and the cell adherent morphology which is the result of cell adhesion to the extracellular matrix. The mechanical stiffness of the endothelial cell is obtained in this simulation.