Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the ima...Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the image by the universal detection network.Thus,a dual subnet based on multi-task collaborative training(DSMCT)is proposed in this paper.Firstly,in the training phase,the Gated Context Aggregation Network(GCANet)is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes.In the test phase,only the YOLOX branch needs to be activated to ensure the detection speed of the model.Secondly,the deformable convolution module is used to improve GCANet to enhance the model’s ability to capture details of non-homogeneous fog.Finally,the Coordinate Attention mechanism is introduced into the Vision Transformer and the backbone network of YOLOX is redesigned.In this way,the feature extraction ability of the network for deep-level information can be enhanced.The experimental results on artificial fog data set FOG_VOC and real fog data set RTTS show that the map value of DSMCT reached 86.56%and 62.39%,respectively,which was 2.27%and 4.41%higher than the current most advanced detection model.The DSMCT network has high practicality and effectiveness for target detection in real foggy scenes.展开更多
In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a f...In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.展开更多
Sea fog detection with remote sensing images is a challenging task. Driven by the different image characteristics between fog and other types of clouds, such as textures and colors, it can be achieved by using image p...Sea fog detection with remote sensing images is a challenging task. Driven by the different image characteristics between fog and other types of clouds, such as textures and colors, it can be achieved by using image processing methods. Currently, most of the available methods are datadriven and relying on manual annotations. However, because few meteorological observations and buoys over the sea can be realized, obtaining visibility information to help the annotations is difficult. Considering the feasibility of obtaining abundant visible information over the land and the similarity between land fog and sea fog, we propose an unsupervised domain adaptation method to bridge the abundant labeled land fog data and the unlabeled sea fog data to realize the sea fog detection. We used a seeded region growing module to obtain pixel-level masks from roughlabels generated by the unsupervised domain adaptation model. Experimental results demonstrate that our proposed method achieves an accuracy of sea fog recognition up to 99.17%, which is nearly 3% higher than those vanilla methods.展开更多
雾计算是一种在云数据中心和物联网(Internet of Things,IoT)设备之间提供分布式计算、存储等服务的技术,它能利用网络边缘进行认证并提供与云交互的方法。雾计算中以传统的安全技术实现用户与雾节点间安全性的方法不够完善,它仍然面对...雾计算是一种在云数据中心和物联网(Internet of Things,IoT)设备之间提供分布式计算、存储等服务的技术,它能利用网络边缘进行认证并提供与云交互的方法。雾计算中以传统的安全技术实现用户与雾节点间安全性的方法不够完善,它仍然面对着窃听攻击、伪装攻击等安全威胁,这对检测技术提出了新的挑战。针对这一问题,提出了一种基于DQL(Double Q-learning)算法的雾计算伪装攻击检测方案。该方案借助物理层安全技术中的信道参数,首先在Q-learning算法的基础上处理Q值过度估计问题,获取最佳的伪装攻击测试阈值,然后通过阈值实现了用户与雾节点间的伪装攻击检测。实验结果表明,该算法检测伪装攻击的性能优于传统的Q-learning算法,具有在雾计算安全防护方面的优越性。展开更多
With the recent developments in the Internet of Things(IoT),the amount of data collected has expanded tremendously,resulting in a higher demand for data storage,computational capacity,and real-time processing capabili...With the recent developments in the Internet of Things(IoT),the amount of data collected has expanded tremendously,resulting in a higher demand for data storage,computational capacity,and real-time processing capabilities.Cloud computing has traditionally played an important role in establishing IoT.However,fog computing has recently emerged as a new field complementing cloud computing due to its enhanced mobility,location awareness,heterogeneity,scalability,low latency,and geographic distribution.However,IoT networks are vulnerable to unwanted assaults because of their open and shared nature.As a result,various fog computing-based security models that protect IoT networks have been developed.A distributed architecture based on an intrusion detection system(IDS)ensures that a dynamic,scalable IoT environment with the ability to disperse centralized tasks to local fog nodes and which successfully detects advanced malicious threats is available.In this study,we examined the time-related aspects of network traffic data.We presented an intrusion detection model based on a twolayered bidirectional long short-term memory(Bi-LSTM)with an attention mechanism for traffic data classification verified on the UNSW-NB15 benchmark dataset.We showed that the suggested model outperformed numerous leading-edge Network IDS that used machine learning models in terms of accuracy,precision,recall and F1 score.展开更多
基金This work was jointly supported by the Special Fund for Transformation and Upgrade of Jiangsu Industry and Information Industry-Key Core Technologies(Equipment)Key Industrialization Projects in 2022(No.CMHI-2022-RDG-004):“Key Technology Research for Development of Intelligent Wind Power Operation and Maintenance Mothership in Deep Sea”.
文摘Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the image by the universal detection network.Thus,a dual subnet based on multi-task collaborative training(DSMCT)is proposed in this paper.Firstly,in the training phase,the Gated Context Aggregation Network(GCANet)is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes.In the test phase,only the YOLOX branch needs to be activated to ensure the detection speed of the model.Secondly,the deformable convolution module is used to improve GCANet to enhance the model’s ability to capture details of non-homogeneous fog.Finally,the Coordinate Attention mechanism is introduced into the Vision Transformer and the backbone network of YOLOX is redesigned.In this way,the feature extraction ability of the network for deep-level information can be enhanced.The experimental results on artificial fog data set FOG_VOC and real fog data set RTTS show that the map value of DSMCT reached 86.56%and 62.39%,respectively,which was 2.27%and 4.41%higher than the current most advanced detection model.The DSMCT network has high practicality and effectiveness for target detection in real foggy scenes.
基金National Key R&D Program of China(2021YFC3000905)Open Research Program of the State Key Laboratory of Severe Weather(2022LASW-B09)National Natural Science Foundation of China(42375010)。
文摘In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.
基金supported in part by the Ministry of Education-China Mobile Communication Corp(MoE-CMCC)Artificial Intelligence Project,China(No.MCM20190701)。
文摘Sea fog detection with remote sensing images is a challenging task. Driven by the different image characteristics between fog and other types of clouds, such as textures and colors, it can be achieved by using image processing methods. Currently, most of the available methods are datadriven and relying on manual annotations. However, because few meteorological observations and buoys over the sea can be realized, obtaining visibility information to help the annotations is difficult. Considering the feasibility of obtaining abundant visible information over the land and the similarity between land fog and sea fog, we propose an unsupervised domain adaptation method to bridge the abundant labeled land fog data and the unlabeled sea fog data to realize the sea fog detection. We used a seeded region growing module to obtain pixel-level masks from roughlabels generated by the unsupervised domain adaptation model. Experimental results demonstrate that our proposed method achieves an accuracy of sea fog recognition up to 99.17%, which is nearly 3% higher than those vanilla methods.
文摘雾计算是一种在云数据中心和物联网(Internet of Things,IoT)设备之间提供分布式计算、存储等服务的技术,它能利用网络边缘进行认证并提供与云交互的方法。雾计算中以传统的安全技术实现用户与雾节点间安全性的方法不够完善,它仍然面对着窃听攻击、伪装攻击等安全威胁,这对检测技术提出了新的挑战。针对这一问题,提出了一种基于DQL(Double Q-learning)算法的雾计算伪装攻击检测方案。该方案借助物理层安全技术中的信道参数,首先在Q-learning算法的基础上处理Q值过度估计问题,获取最佳的伪装攻击测试阈值,然后通过阈值实现了用户与雾节点间的伪装攻击检测。实验结果表明,该算法检测伪装攻击的性能优于传统的Q-learning算法,具有在雾计算安全防护方面的优越性。
基金the Beijing Natural Science Foundation(No.4212015)Natural Science Foundation of China(No.61801008)+3 种基金China Ministry of Education-China Mobile Scientific Research Foundation(No.MCM20200102)China Postdoctoral Science Foundation(No.2020M670074)Beijing Municipal Commission of Education Foundation(No.KM201910005025)the Deanship of Scientific Research at King Khalid University for funding this work through large groups Project under Grant Number RGP.2/201/43.
文摘With the recent developments in the Internet of Things(IoT),the amount of data collected has expanded tremendously,resulting in a higher demand for data storage,computational capacity,and real-time processing capabilities.Cloud computing has traditionally played an important role in establishing IoT.However,fog computing has recently emerged as a new field complementing cloud computing due to its enhanced mobility,location awareness,heterogeneity,scalability,low latency,and geographic distribution.However,IoT networks are vulnerable to unwanted assaults because of their open and shared nature.As a result,various fog computing-based security models that protect IoT networks have been developed.A distributed architecture based on an intrusion detection system(IDS)ensures that a dynamic,scalable IoT environment with the ability to disperse centralized tasks to local fog nodes and which successfully detects advanced malicious threats is available.In this study,we examined the time-related aspects of network traffic data.We presented an intrusion detection model based on a twolayered bidirectional long short-term memory(Bi-LSTM)with an attention mechanism for traffic data classification verified on the UNSW-NB15 benchmark dataset.We showed that the suggested model outperformed numerous leading-edge Network IDS that used machine learning models in terms of accuracy,precision,recall and F1 score.