Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house C...Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional(2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile(CIP)-based Cartesian grid model, in which a more accurate VOF(Volume of Fluid) method, the THINC/SW scheme(THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.展开更多
A two-dimensional numerical wave flume is developed to study the focused waves group propagation and the consequent breaking processes. The numerical model is based on the Reynolds-Averaged Navier-Stokes (PANS) equa...A two-dimensional numerical wave flume is developed to study the focused waves group propagation and the consequent breaking processes. The numerical model is based on the Reynolds-Averaged Navier-Stokes (PANS) equations, with the standard k - c turbulence model to simulate the turbulence effects. To track the complicated and broken free-surface, the Volume Of Fluid (VOF) method is employed. The numerical model combines the "Partial Cell Treatment (PCT)" method with the "Locally Relative Stationary (LRS)" concept to treat the moving wave paddle so that various waves can be generated directly in a fixed Cartesian grid system. The theoretical results of the linear and nonlinear waves are used to validate the numerical wave flume firstly, and then a plunging breaking wave created by a focused waves group is simulated. The numerical results are compared to the experimental data and other simulation results, with very good agreements. The turbulence intensity, the flow field and the energy dissipation in the breaking processes are analyzed based on the numerical results. It is shown that the present numerical model is efficient and accurate for studying the waves group generation, the waves packet propagation, and the wave breaking processes.展开更多
An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are...An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are studied. The distribution of maximum amplitude and the evolution of time series and spectra during wave packet propagation and the variation of water surface parameters are extensively investigated. The results reveal that the characteristics of focusing waves are significantly influenced by wave directionality and that the breaking criteria for directional waves are distinctly different from those for unidirectional waves.展开更多
Based on phase focusing theory, focusing waves with different spectral types and breaking severities were generated in a wave flume. The time series of surface elevation fluctuation along the flume were obtained by ut...Based on phase focusing theory, focusing waves with different spectral types and breaking severities were generated in a wave flume. The time series of surface elevation fluctuation along the flume were obtained by utilizing 22 wave probes mounted along the mid-stream of the flume. Based on the wave spectrum obtained using fast Fourier transform(FFT), the instability characteristics of the energy spectrum were reported in this paper. By analyzing the variation of total spectral energy, the total spectral energy after wave breaking was found to clearly decrease, and the loss value and ratio gradually increased and tended to stabilize with the enhancement of breaking severity for different spectral types. When wave breaking occurred, the energy loss was primarily in a high-frequency range of f/fp>1.0, and energy gain was primarily in a low-frequency range of f/fp<1.0. As the breaking severity increased, the energy gain-loss ratio decreased gradually, which demonstrates that the energy was mostly dissipated. For plunging waves, the energy gain-loss ratio reached 24% for the constant wave steepness(CWS) spectrum, and was slightly larger at approximately 30% for the constant wave amplitude(CWA) spectrum, and was the largest at approximately 42% for the Pierson-Moskowitz(PM) spectrum.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51209184 and 51479175)Zhejiang Provincial Natural Science Foundation of China(Grant No.LR16E090002)the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2013490211)
文摘Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional(2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile(CIP)-based Cartesian grid model, in which a more accurate VOF(Volume of Fluid) method, the THINC/SW scheme(THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.
基金supported by the National Natural Science Foundation of China(Grant No.51061130547)
文摘A two-dimensional numerical wave flume is developed to study the focused waves group propagation and the consequent breaking processes. The numerical model is based on the Reynolds-Averaged Navier-Stokes (PANS) equations, with the standard k - c turbulence model to simulate the turbulence effects. To track the complicated and broken free-surface, the Volume Of Fluid (VOF) method is employed. The numerical model combines the "Partial Cell Treatment (PCT)" method with the "Locally Relative Stationary (LRS)" concept to treat the moving wave paddle so that various waves can be generated directly in a fixed Cartesian grid system. The theoretical results of the linear and nonlinear waves are used to validate the numerical wave flume firstly, and then a plunging breaking wave created by a focused waves group is simulated. The numerical results are compared to the experimental data and other simulation results, with very good agreements. The turbulence intensity, the flow field and the energy dissipation in the breaking processes are analyzed based on the numerical results. It is shown that the present numerical model is efficient and accurate for studying the waves group generation, the waves packet propagation, and the wave breaking processes.
基金This research was partially supported by the National Natural Science Foundation of China (Grant No. 50379002),the Korea Research Council of Public Science and Technology (Principal R&D Program) and Korea Ministry of Science and Technology (International Collaboration Research Program)
文摘An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are studied. The distribution of maximum amplitude and the evolution of time series and spectra during wave packet propagation and the variation of water surface parameters are extensively investigated. The results reveal that the characteristics of focusing waves are significantly influenced by wave directionality and that the breaking criteria for directional waves are distinctly different from those for unidirectional waves.
基金financially supported by the State Key Research and Development Program of China(Grant No.2016YFC1401405)the National Natural Science Foundation of China(Grant Nos.51779038 and 51279028)
文摘Based on phase focusing theory, focusing waves with different spectral types and breaking severities were generated in a wave flume. The time series of surface elevation fluctuation along the flume were obtained by utilizing 22 wave probes mounted along the mid-stream of the flume. Based on the wave spectrum obtained using fast Fourier transform(FFT), the instability characteristics of the energy spectrum were reported in this paper. By analyzing the variation of total spectral energy, the total spectral energy after wave breaking was found to clearly decrease, and the loss value and ratio gradually increased and tended to stabilize with the enhancement of breaking severity for different spectral types. When wave breaking occurred, the energy loss was primarily in a high-frequency range of f/fp>1.0, and energy gain was primarily in a low-frequency range of f/fp<1.0. As the breaking severity increased, the energy gain-loss ratio decreased gradually, which demonstrates that the energy was mostly dissipated. For plunging waves, the energy gain-loss ratio reached 24% for the constant wave steepness(CWS) spectrum, and was slightly larger at approximately 30% for the constant wave amplitude(CWA) spectrum, and was the largest at approximately 42% for the Pierson-Moskowitz(PM) spectrum.