As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum we...As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum well GaAs/AlGaAs photodetectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolor capability in these regions. The main challenges facing all multicolor devices are more complicated device structtures, thicker and multilayer material growth, and more difficult device fabrication, especially when the array size gets larger and pixel size gets smaller. In the paper recent progress in development of two color HgCdTe photodiodes and quantum well infrared photodetectors is presented. More attention is devoted to HgCdTe detectors. The two color detector arrays are based upon an n P N (the capital letters mean the materials with larger bandgap energy) HgCdTe triple layer heterojunction design. Vertically stacking the two p n junctions permits incorporation of both detectros into a single pixel. Both sequential mode and simultaneous mode detectors are fabricated. The mode of detection is determined by the fabrication process of the multilayer materials. Also the performances of stacked multicolor QWIPs detectors are presented. For multicolor arrays, QWIP’s narrow band spectrum is an advantage, resulting in low spectral crosstalk. The major challenge for QWIP is developing broadband or multicolor optical coupling structures that permit efficient absorption of all required spectral bands.展开更多
In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, t...In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.展开更多
In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer...In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls.Comparing the IV characterization of detectors by using two different masks,the detector using the SiO_2 hard mask has the R_0A of 9.7×10~6 Ω·cm^2,while the detector using the photoresist mask has the R_0A of3.2 × 10~2 Ω·cm^2 in 77 K.After that we focused on the method of removing the remaining SiO_2 after mesa etching.The dry ICP etching and chemical buffer oxide etcher(BOE) based on HF and NH4 F are used in this part.Detectors using BOE only have closer R_0A to that using the combining method,but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE.We finally choose the combining method and fabricated the 640×512 FPA.The FPA with cutoff wavelength of 4.8 μm has the average R_0A of 6.13 × 10~9 Ω·cm^2 and the average detectivity of 4.51 × 10~9 cm·Hz^(1/2).W^(-1)at 77 K.The FPA has good uniformity with the bad dots rate of 1.21%and the noise equivalent temperature difference(NEDT) of 22.9 mK operating at 77 K.展开更多
文摘As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum well GaAs/AlGaAs photodetectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolor capability in these regions. The main challenges facing all multicolor devices are more complicated device structtures, thicker and multilayer material growth, and more difficult device fabrication, especially when the array size gets larger and pixel size gets smaller. In the paper recent progress in development of two color HgCdTe photodiodes and quantum well infrared photodetectors is presented. More attention is devoted to HgCdTe detectors. The two color detector arrays are based upon an n P N (the capital letters mean the materials with larger bandgap energy) HgCdTe triple layer heterojunction design. Vertically stacking the two p n junctions permits incorporation of both detectros into a single pixel. Both sequential mode and simultaneous mode detectors are fabricated. The mode of detection is determined by the fabrication process of the multilayer materials. Also the performances of stacked multicolor QWIPs detectors are presented. For multicolor arrays, QWIP’s narrow band spectrum is an advantage, resulting in low spectral crosstalk. The major challenge for QWIP is developing broadband or multicolor optical coupling structures that permit efficient absorption of all required spectral bands.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402400)the National Natural Science Foundation of China(Grant Nos.61675225,61605232,and 61775228)the Shanghai Rising-Star Program,China(Grant No.17QA1404900)
文摘In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.
基金Project supported by the National Basic Research Program of China(Grant Nos.2014CB643903,2013CB932904,2012CB932701,and 2011CB922201)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)+2 种基金the National Natural Science Foundation of China(Grant Nos.61274013,U1037602,61306013,and 61290303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01010200)China Postdoctoral Science Foundation(Grant No.2014M561029)
文摘In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls.Comparing the IV characterization of detectors by using two different masks,the detector using the SiO_2 hard mask has the R_0A of 9.7×10~6 Ω·cm^2,while the detector using the photoresist mask has the R_0A of3.2 × 10~2 Ω·cm^2 in 77 K.After that we focused on the method of removing the remaining SiO_2 after mesa etching.The dry ICP etching and chemical buffer oxide etcher(BOE) based on HF and NH4 F are used in this part.Detectors using BOE only have closer R_0A to that using the combining method,but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE.We finally choose the combining method and fabricated the 640×512 FPA.The FPA with cutoff wavelength of 4.8 μm has the average R_0A of 6.13 × 10~9 Ω·cm^2 and the average detectivity of 4.51 × 10~9 cm·Hz^(1/2).W^(-1)at 77 K.The FPA has good uniformity with the bad dots rate of 1.21%and the noise equivalent temperature difference(NEDT) of 22.9 mK operating at 77 K.