期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
拆除爆破飞石及其防护研究 被引量:19
1
作者 林大能 刘小春 《湘潭矿业学院学报》 1999年第3期9-13,共5页
飞石是引起爆破安全事故的主要因素研究了飞石产生的原因,通过实验和数据分析,推导出了飞石运动规律的计算公式,并给出了砖、混凝土的介质系数B的取值;对飞石进行了弹道分析,推出了飞石最大飞行距离的计算公式;最后给出了飞石的控制方法... 飞石是引起爆破安全事故的主要因素研究了飞石产生的原因,通过实验和数据分析,推导出了飞石运动规律的计算公式,并给出了砖、混凝土的介质系数B的取值;对飞石进行了弹道分析,推出了飞石最大飞行距离的计算公式;最后给出了飞石的控制方法图1,表1。 展开更多
关键词 建筑物 拆除 爆破 飞石 防护
下载PDF
爆破飞石致人死亡案例分析 被引量:19
2
作者 高文乐 毕卫国 +1 位作者 张金泉 赵锦桥 《爆破》 CSCD 2002年第3期77-78,共2页
根据爆破飞石在空气中的抛掷规律及岩石结构的物理性质 ,对爆破飞石致人死亡典型案例进行分析 ,为法院定案提供了科学依据。
关键词 爆破飞石 岩石结构 死亡事故 原因分析 矿山爆破 安全
下载PDF
爆破飞石预测公式的量纲分析法 被引量:13
3
作者 吴春平 刘连生 +1 位作者 窦金龙 张光权 《工程爆破》 北大核心 2012年第2期26-28,共3页
在爆破飞石距离的研究方面,目前还没有一个普遍接受的爆破飞石预测公式。量纲分析法不涉及物理问题的数量方程,可以简化数学分析过程,减少相关参数,因此特别适合用于爆破理论分析。用量纲分析法对爆破飞石的产生过程进行了研究,将其分... 在爆破飞石距离的研究方面,目前还没有一个普遍接受的爆破飞石预测公式。量纲分析法不涉及物理问题的数量方程,可以简化数学分析过程,减少相关参数,因此特别适合用于爆破理论分析。用量纲分析法对爆破飞石的产生过程进行了研究,将其分为炸药爆炸和飞石抛掷两个过程,得出特定情况下爆破飞石抛掷距离的通用预测公式。 展开更多
关键词 工程爆破 飞石 量纲分析 π定理 相似理论
下载PDF
Prediction of flyrock in open pit blasting operation using machine learning method 被引量:9
4
作者 Manoj Khandelwal M. Monjezi 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期313-316,共4页
Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. ... Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict flyrock in blasting operations of Soungun Copper Mine, Iran incorporating rock properties and blast design parameters using support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA), too. Coefficient of determination (CoD) and mean absolute error (MAE) were taken as performance measures. It was found that CoD between measured and predicted flyrock was 0.948 and 0.440 by SVM and MVRA, respectively, whereas MAE between measured and predicted flyrock was 3.11 and 7.74 by SVM and MVRA, respectively. 展开更多
关键词 Blasting Soungun Copper Mine flyrock Support vector machine MVRA
下载PDF
Prediction of blast-induced flyrock in Indian limestone mines using neural networks 被引量:8
5
作者 R.Trivedi T.N.Singh A.K.Raina 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期447-454,共8页
Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has chal... Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Artificial neural network(ANN) Blasting Opencast mining Burden Stemming Specific charge flyrock
下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:9
6
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 flyrock Harris hawks optimization(HHO) Multi-layer perceptron(MLP) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(WOA)
下载PDF
A Comparative Study of Two Tree-Based Models for Predicting Flyrock Velocity at Open Pit Bench Mining
7
作者 Ezatullah Rawnaq Bassir Esmatyar +2 位作者 Akihiro Hamanaka Takashi Sasaoka Hideki Shimada 《Open Journal of Applied Sciences》 2024年第2期267-287,共21页
Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in th... Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in these industries, it can also have multiple adverse environmental impacts. One such effect is flyrock, which poses risks to nearby machinery, and residential structures, and can even lead to injuries or fatalities. To optimize blasting efficiency as well as restrict side effects, prediction of the blast aftereffects is vital. Therefore, the present work focuses on using two machine learning methods to predict the velocity of flyrock in the open pit mine. To address this issue, a comprehensive dataset was gathered from the open pit mine. Then, Decision Tree and Random Forest algorithms were employed to predict flyrock velocity. The Random Forest model demonstrated superior performance compared to the Decision Tree model. Nonetheless, the performance of the Decision Tree model was deemed satisfactory, as evidenced by its coefficient of determination value of 0.83, mean squared error (MSE) of 4.2, and mean absolute percentage error (MAPE) of 5.6%. Considering these metrics, it is reasonable to conclude that tree-based algorithms can be effective in predicting flyrock velocity. 展开更多
关键词 flyrock Machine Learning Bench Blasting Coefficient of Determination
下载PDF
钢筋混凝土立柱爆破破坏过程及个别飞散物试验研究 被引量:8
8
作者 黄小武 谢先启 +3 位作者 贾永胜 姚颖康 孙金山 韩宇 《爆破》 CSCD 北大核心 2020年第1期13-18,共6页
爆破拆除实践中存在保守设计、过度防护的现象,其根源是不能确定炸药能量“供”与“求”的平衡点。为研究多药包共同作用下钢筋混凝土立柱爆破破坏及个别飞散物运动过程,在野外爆破试验场开展了多组立柱爆破试验。高速摄影观测及破碎碎... 爆破拆除实践中存在保守设计、过度防护的现象,其根源是不能确定炸药能量“供”与“求”的平衡点。为研究多药包共同作用下钢筋混凝土立柱爆破破坏及个别飞散物运动过程,在野外爆破试验场开展了多组立柱爆破试验。高速摄影观测及破碎碎块分析结果表明:高段位孔内雷管的名义延期时间的误差影响立柱的爆破破坏过程;爆破个别飞散物在100 ms的观测时间内的运动速度与时间呈线性关系,抛掷速度为10~20 m/s,抛掷方向以水平方向为主。在工程实践中,建议将爆破对象外围构件作为防护重点,以柔性防护为主、刚性防护为辅,提高项目经济效益与施工效率。 展开更多
关键词 钢筋混凝土立柱 爆破拆除 个别飞散物 高速摄影
下载PDF
Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods
9
作者 Ji Zhou Yijun Lu +3 位作者 Qiong Tian Haichuan Liu Mahdi Hasanipanah Jiandong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1595-1617,共23页
Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined wi... Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined with four algorithms:gravitational search algorithm(GSA),biogeography-based optimization(BBO),ant colony optimization(ACO),and whale optimization algorithm(WOA)for predicting flyrock in two surface mines in Iran.Additionally,three other methods,including artificial neural network(ANN),kernel extreme learning machine(KELM),and general regression neural network(GRNN),are employed,and their performances are compared to those of four hybrid SVR models.After modeling,the measured and predicted flyrock values are validated with some performance indices,such as root mean squared error(RMSE).The results revealed that the SVR-WOA model has the most optimal accuracy,with an RMSE of 7.218,while the RMSEs of the KELM,GRNN,SVR-GSA,ANN,SVR-BBO,and SVR-ACO models are 10.668,10.867,15.305,15.661,16.239,and 18.228,respectively.Therefore,combining WOA and SVR can be a valuable tool for accurately predicting flyrock distance in surface mines. 展开更多
关键词 flyrock induced by blasting optimization algorithms SVR GRNN
下载PDF
露天爆破飞石距离智能预测研究
10
作者 周红敏 赵玉杰 +1 位作者 张宪堂 王洪立 《安全与环境学报》 CAS CSCD 北大核心 2024年第7期2554-2564,共11页
为了在露天爆破中更准确地预测出飞石的抛掷距离,研究引入多科得分的概念,利用多科得分思维进化算法(Multidisciplinary Score Mind Evolutionary Algorithm,MSMEA)对BP神经网络(Back-Propagation Neural Network)进行优化并建立模型来... 为了在露天爆破中更准确地预测出飞石的抛掷距离,研究引入多科得分的概念,利用多科得分思维进化算法(Multidisciplinary Score Mind Evolutionary Algorithm,MSMEA)对BP神经网络(Back-Propagation Neural Network)进行优化并建立模型来预测飞石距离。通过分析隐含层神经元个数、种群规模、子种群规模、优胜及临时子种群个数建立了64个多科得分思维进化算法优化BP神经网络模型(Back-Propagation Neural Network Optimized by Multidisciplinary Score Mind Evolutionary Algorithm,MSMEA BP),并选取了其中最优的MSMEA BP模型。为了验证预测模型的有效性,分别用MSMEA BP模型、思维进化算法优化BP神经网络模型(Back-Propagation Neural Network Optimized by Mind Evolutionary Algorithm,MEA BP)和BP神经网络模型对10组爆破飞石距离进行预测。结果显示,MSMEA BP模型得到的预测结果与真实值之间的平均相对误差、决定系数、均方根误差、均方根百分比误差分别达到3.67%、0.9808、7.3571、1.33%,依次优于MEA BP模型和BP神经网络模型,表明在相同训练条件下,采用多科得分思维进化算法对BP神经网络模型进行优化,可以克服BP神经网络易陷入局部最优解的问题,进而显著提高模型的预测精度。该方法为预测爆破飞石距离提供了一个新思路。 展开更多
关键词 安全工程 爆破安全距离 飞石 思维进化算法 神经网络
下载PDF
基于离散单元法的三维滑坡过程数值模拟分析 被引量:5
11
作者 赵川 付成华 +2 位作者 邹海明 何欢 钟学梅 《人民珠江》 2015年第2期12-15,共4页
为进一步分析滑坡体的运动过程,提出了一种采用离散单元法模拟滑坡运动过程的方法,通过与有限元模型对比验证其合理性,并用于三维滑坡数值模拟。计算结果表明:滑坡体在t=3 s时平均速度最大,为6.4 m/s,此时滑坡体动能达9.79×108J,... 为进一步分析滑坡体的运动过程,提出了一种采用离散单元法模拟滑坡运动过程的方法,通过与有限元模型对比验证其合理性,并用于三维滑坡数值模拟。计算结果表明:滑坡体在t=3 s时平均速度最大,为6.4 m/s,此时滑坡体动能达9.79×108J,滑坡体在运动过程中产生大量飞石,最大速度可达21.3 m/s,在t=9 s后运动基本停止;滑坡运动停止后,滑坡体前缘和后部土体结构发生破坏,中部基本完整,确定了滑坡影响范围距离坡脚20 m左右。计算结果对滑坡灾害评估和边坡防护工程设计有一定参考价值。 展开更多
关键词 滑坡体 离散单元法 数值模拟 动能 飞石
下载PDF
论烟囱定向拆除爆破的安全技术 被引量:4
12
作者 郭学彬 张继春 《爆破》 CSCD 2006年第1期63-67,共5页
定向爆破是烟囱、水塔等高耸建筑物最常用的拆除爆破方案。从保证烟囱可靠倒塌、定向倾倒、飞石防护、爆堆控制等方面比较全面地论述了烟囱定向拆除爆破的安全技术。
关键词 定向倾倒 倒向失控 爆破缺口 支承体 飞石
下载PDF
控制硐室爆破飞石安全问题措施探讨 被引量:3
13
作者 万希岭 李红杰 许永胜 《爆破》 CSCD 2003年第4期101-103,共3页
 硐室大爆破产生个别飞石的原因,主要有测量不准确、地质条件不清楚、药包布置不合适、爆破参数选择不当、装药堵塞不按设计要求施工、人为操作失误等。重点探讨控制硐室大爆破飞石应采取的措施,并以湖北郧西30万方级配石料开采硐室大...  硐室大爆破产生个别飞石的原因,主要有测量不准确、地质条件不清楚、药包布置不合适、爆破参数选择不当、装药堵塞不按设计要求施工、人为操作失误等。重点探讨控制硐室大爆破飞石应采取的措施,并以湖北郧西30万方级配石料开采硐室大爆破为例,证明应用这些安全措施,成功地将爆破飞石控制在200m的范围之内。 展开更多
关键词 硐室爆破 飞石控制 爆破安全 空气冲击波 起爆网路 爆破参数
下载PDF
爆破飞石的成因及预防 被引量:3
14
作者 周浩仓 《矿业研究与开发》 CAS 北大核心 1995年第3期57-59,共3页
根据文献资料和爆破工程实践,分析了爆破工程中产生飞石的诸多原因,指出了预防飞石危害应采取的一系列措施。认为,必须从确保安全的角度精心设计和周密施工,以减少或杜绝飞石事故。
关键词 爆破工程 飞石 爆破方案 爆破参数 预防措施
下载PDF
Prediction of flyrock induced by mine blasting using a novel kernel-based extreme learning machine 被引量:3
15
作者 Mehdi Jamei Mahdi Hasanipanah +2 位作者 Masoud Karbasi Iman Ahmadianfar Somaye Taherifar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1438-1451,共14页
Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evalu... Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets. 展开更多
关键词 BLASTING flyrock distance Kernel extreme learning machine(KELM) Local weighted linear regression(LWLR) Response surface methodology(RSM)
下载PDF
山体大爆破地震和飞石的控制 被引量:1
16
作者 袁志超 《矿业研究与开发》 CAS 1997年第S1期120-122,共3页
介绍了某复杂环境下大爆破中降低地震波和飞石危害的具体措施,并叙述了所采取措施的依据。较详细地分析了所取得的爆破效果。
关键词 大爆破 码头 爆破地震 飞石
下载PDF
小露天黄金矿的安全爆破 被引量:1
17
作者 孙景瑜 《黄金》 CAS 北大核心 1994年第3期21-24,共4页
本文通过对露天爆破自设计至爆破完毕的全过程中,各个可控性因素对爆破安全性的影响分析,论述了如何做到安全爆破。
关键词 安全 爆破 露天矿 金矿
下载PDF
石灰石笋的控制爆破
18
作者 廖煜恒 《爆破》 CSCD 2001年第4期29-30,共2页
介绍了露天矿边界及建筑物周边的石灰石笋的控制爆破。采用上部垂孔与下部平孔结合的微差爆破法,通过严格控制爆破参数及装药量,成功地控制了爆破飞石。
关键词 控制爆破 微差爆破 石灰石笋 安全 露天矿 爆破方案 爆破参数
下载PDF
工程爆破中的飞石预防和控制 被引量:27
19
作者 康宁 《爆破》 CSCD 1999年第1期80-87,共8页
本文介绍了飞石飞散距离的计算公式,剖析了飞石产生的原因,提出了控制飞石产生的有效措施。
关键词 工程爆破 飞石控制 飞散距离
下载PDF
基于BP神经网络模型的爆破飞石最大飞散距离预测研究 被引量:16
20
作者 刘庆 张光权 +1 位作者 吴春平 陶铁军 《爆破》 CSCD 北大核心 2013年第1期114-118,共5页
首先将BP神经网络模型引入爆破飞石距离的预测研究,以最小抵抗线、炸药单耗、单孔最大药量作为影响爆破飞石最大距离的主要因素,建立了爆破飞石预测的BP神经网络模型,然后以某露天矿山深孔台阶松动爆破为例,利用爆破施工过程中收集的原... 首先将BP神经网络模型引入爆破飞石距离的预测研究,以最小抵抗线、炸药单耗、单孔最大药量作为影响爆破飞石最大距离的主要因素,建立了爆破飞石预测的BP神经网络模型,然后以某露天矿山深孔台阶松动爆破为例,利用爆破施工过程中收集的原始资料和爆破飞石监测数据,对建立的BP神经网络模型进行了训练,最后应用经训练的BP神经网络模型对爆破飞石距离进行了预测。与实测值比较后发现,BP网络模型的预报结果非常接近实测值,能够满足工程实践的要求,是一种有效的预测爆破飞石最大距离的方法。 展开更多
关键词 BP神经网络 爆破飞石 最大飞散距离 预测
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部