The Huang Shui River, a main tributary of the Yellow River, crosses a series of tectonically subsided and uplifted areas that show different patterns of terrace formation. The distribution of fluvial terrace of the Hu...The Huang Shui River, a main tributary of the Yellow River, crosses a series of tectonically subsided and uplifted areas that show different patterns of terrace formation. The distribution of fluvial terrace of the Huang Shui River is studied through topographic and sedimentologic terrace mapping. Three terraces in the Haiyan Basin, four terraces in the Huangyuan Basin, 19 terraces in the Xi'ning Basin (the four high terraces may belong to another river), nine terraces in the Ping'an Basin, five terraces in the Ledu Basin and 12 terraces in the Minhe Basin are recognized. Sedimentology research shows that the geomorphologic and sedimentological pattern of the Huang Shui River, which is located at the margin of Tibet, are different from that of the rivers at other regions. The formation process of the terrace is more complicated at the Huang Shui catchment: both accumulation terrace and erosion terrace were formed in each basin and accumulation terraces were developed in some basins when erosion terraces were formed in other basins, indicating fluvial aggradation may occur in some basins simultaneously with river incision in other basins. A conceptual model of the formation process of these two kinds of fluvial terraces at Huang Shui catchment is brought forward in this paper. First, the equilibrium state of the river is broken because of climatic change and/or tectonic movement, and the river incises in all basins in the whole catchment until reaching a new equilibrium state. Then, the downstream basin subsides quickly and the equilibrium state is broken again, and the river incises at upstream basins while the river accumulates at the subsidence basin quickly until approaching a new equilibrium state again. Finally, the river incises in the whole catchment because of climatic change and/or tectonic movement and the accumulation terrace is formed at the subsidence basin while the erosion terrace is formed at other basins. The existence of the accumulation terrace implied the tectonic subsidence in the s展开更多
基金supported by the National Natural Science Foundation of China(Grant no.40901002 and 40325007)the 985 project to Nanjing University and the CAS-KNAW PhD project(05-PhD-10)
文摘The Huang Shui River, a main tributary of the Yellow River, crosses a series of tectonically subsided and uplifted areas that show different patterns of terrace formation. The distribution of fluvial terrace of the Huang Shui River is studied through topographic and sedimentologic terrace mapping. Three terraces in the Haiyan Basin, four terraces in the Huangyuan Basin, 19 terraces in the Xi'ning Basin (the four high terraces may belong to another river), nine terraces in the Ping'an Basin, five terraces in the Ledu Basin and 12 terraces in the Minhe Basin are recognized. Sedimentology research shows that the geomorphologic and sedimentological pattern of the Huang Shui River, which is located at the margin of Tibet, are different from that of the rivers at other regions. The formation process of the terrace is more complicated at the Huang Shui catchment: both accumulation terrace and erosion terrace were formed in each basin and accumulation terraces were developed in some basins when erosion terraces were formed in other basins, indicating fluvial aggradation may occur in some basins simultaneously with river incision in other basins. A conceptual model of the formation process of these two kinds of fluvial terraces at Huang Shui catchment is brought forward in this paper. First, the equilibrium state of the river is broken because of climatic change and/or tectonic movement, and the river incises in all basins in the whole catchment until reaching a new equilibrium state. Then, the downstream basin subsides quickly and the equilibrium state is broken again, and the river incises at upstream basins while the river accumulates at the subsidence basin quickly until approaching a new equilibrium state again. Finally, the river incises in the whole catchment because of climatic change and/or tectonic movement and the accumulation terrace is formed at the subsidence basin while the erosion terrace is formed at other basins. The existence of the accumulation terrace implied the tectonic subsidence in the s