针对叶片故障的原因颤振问题,基于计算流体动力学/计算结构力学(CFD/CSD)耦合算法,研究了压气机典型叶片的流固耦合(FSI)问题及颤振特性.使用有限体积法求解非定常三维Navier-Stokes方程和有限元法求解三维结构体模型,在两个求解器间由...针对叶片故障的原因颤振问题,基于计算流体动力学/计算结构力学(CFD/CSD)耦合算法,研究了压气机典型叶片的流固耦合(FSI)问题及颤振特性.使用有限体积法求解非定常三维Navier-Stokes方程和有限元法求解三维结构体模型,在两个求解器间由载荷转换、网格变形传递和同步化方法完成数据交换及求解.以高性能风扇NASA(National Aeronautics and Space Administration)Rotor 67为例,对其工况下的气弹响应进行分析,计算结果与实验数据进行对比,以确认方法的正确性和有效性.结果表明可根据循环功和平均压力分布来分析叶片的颤振机理,从而为压气机稳定性的判定提供重要依据.展开更多
文摘针对叶片故障的原因颤振问题,基于计算流体动力学/计算结构力学(CFD/CSD)耦合算法,研究了压气机典型叶片的流固耦合(FSI)问题及颤振特性.使用有限体积法求解非定常三维Navier-Stokes方程和有限元法求解三维结构体模型,在两个求解器间由载荷转换、网格变形传递和同步化方法完成数据交换及求解.以高性能风扇NASA(National Aeronautics and Space Administration)Rotor 67为例,对其工况下的气弹响应进行分析,计算结果与实验数据进行对比,以确认方法的正确性和有效性.结果表明可根据循环功和平均压力分布来分析叶片的颤振机理,从而为压气机稳定性的判定提供重要依据.