Hydrogen peroxide(H2 O2), as important products of oxygen metabolism, plays an important role in many biological processes, such as immune responses and cellular signal transduction. However, abnormal production of H2...Hydrogen peroxide(H2 O2), as important products of oxygen metabolism, plays an important role in many biological processes, such as immune responses and cellular signal transduction. However, abnormal production of H2 O2 can damage cellular biomolecules, which was closely associated with many diseases.Thus, it is urgent to monitor the level change of H2 O2 in living cells, particularly at subcellular levels.Toward this end, a wide variety of H2 O2 fluorescent probes have been designed, developed and applied for imaging of H2 O2 in subcellular levels. In this review, we highlight the representative cases of H2 O2 fluorescent probes with mitochondria, nuclei and lysosomes-targetable ability. The review contains organelle target strategies, structures, fluorescence behavior and biological applications of these probes.展开更多
We have developed a simple method for the preparation of highly fluorescent and stable, water-soluble CdTe quantum dots in sol-gel-derived composite silica spheres which were coated with calix[6]arene. The resulting n...We have developed a simple method for the preparation of highly fluorescent and stable, water-soluble CdTe quantum dots in sol-gel-derived composite silica spheres which were coated with calix[6]arene. The resulting nanoparticles (NPs) were characterized in terms of UV, fluorescence and FT-IR spectroscopy and TEM. The results show that the new NPs display more intense fluorescence intensity and are more stable than its precursors of the type SiO2/CdTe. Under the optimum, the novel NPs exhibit a higher selectivity and ultrasensitive fluorescence probes for the determination of gly-phosate over other pesticides, the fluorescence intensity increase with the concentration of glyphosate in the range from 1.0 to 25.0 nmol/L and the detection limit is low to 0.0725 nmol/L. A mechanism is suggested to explain the inclusion process by a Langmuir binding isotherm.展开更多
基金the National Natural Science Foundation of China (Nos. 21705102, 21775096)the Shanxi Province Science Foundation for Youths (No. 201701D221061)+1 种基金Shanxi Province Foundation for Returnees (No. 2017-026)Scientific Instrument Center of Shanxi University (No. 201512)
文摘Hydrogen peroxide(H2 O2), as important products of oxygen metabolism, plays an important role in many biological processes, such as immune responses and cellular signal transduction. However, abnormal production of H2 O2 can damage cellular biomolecules, which was closely associated with many diseases.Thus, it is urgent to monitor the level change of H2 O2 in living cells, particularly at subcellular levels.Toward this end, a wide variety of H2 O2 fluorescent probes have been designed, developed and applied for imaging of H2 O2 in subcellular levels. In this review, we highlight the representative cases of H2 O2 fluorescent probes with mitochondria, nuclei and lysosomes-targetable ability. The review contains organelle target strategies, structures, fluorescence behavior and biological applications of these probes.
文摘We have developed a simple method for the preparation of highly fluorescent and stable, water-soluble CdTe quantum dots in sol-gel-derived composite silica spheres which were coated with calix[6]arene. The resulting nanoparticles (NPs) were characterized in terms of UV, fluorescence and FT-IR spectroscopy and TEM. The results show that the new NPs display more intense fluorescence intensity and are more stable than its precursors of the type SiO2/CdTe. Under the optimum, the novel NPs exhibit a higher selectivity and ultrasensitive fluorescence probes for the determination of gly-phosate over other pesticides, the fluorescence intensity increase with the concentration of glyphosate in the range from 1.0 to 25.0 nmol/L and the detection limit is low to 0.0725 nmol/L. A mechanism is suggested to explain the inclusion process by a Langmuir binding isotherm.