Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of...Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.展开更多
In the light of the needs to develop high-performance heat transfer component for nation-level large-scale scientific projects of China,a hypervapotron experimental platform with supply of heat flux 1 10 MW m-2 was es...In the light of the needs to develop high-performance heat transfer component for nation-level large-scale scientific projects of China,a hypervapotron experimental platform with supply of heat flux 1 10 MW m-2 was established.With this platform,the multiphase flow and heat transfer phenomena on the surface of triangular fin when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence(PLIF) and high-speed photography techniques.The temperature contour on the slice plane of fin symmetry was measured and the heat flux contour was processed based on gradient computation.It is confirmed that:1) PLIF with high-speed photography is very powerful technique to investigate the multiphase flow of hypervapotron quantitatively;2) evaporation is the primary way in heat transfer mechanism of hypervapotron flow under the condition of high heat flux.The techniques and results obtained will provide useful reference in the R&D of hypervapotron technology in China.展开更多
In this work,the effects of fuel temperatures and pressure drops on the flow field and spray characteristics of a pressure-swirl atomizer were discussed using the Particle Imaging Velocimetry(PIV),Planar Laser Induced...In this work,the effects of fuel temperatures and pressure drops on the flow field and spray characteristics of a pressure-swirl atomizer were discussed using the Particle Imaging Velocimetry(PIV),Planar Laser Induced Fluorescence(PLIF)and Laser Particle Size Analyzer(LPSA)methods.Then the air-blast atomizer was selected to study the interaction of initial atomization and flow field.The effect of fuel-air ratio on the air-blast atomizer were also considered,where the fuel-air ratio was varied by adjusting mass flow rate of the air and fuel respectively.The results show that the spray angle of the pressure-swirl atomizer increases first and changes a little after the pressure drop higher than 0.5 MPa.However,more fuel concentrate on the central region,which is mainly caused by the increase of the proportion of small droplets with lower centrifugal force.The fuel temperature can improve the spray angle only in lower pressure drop,and it has a little effect under higher pressure drops.In addition,the fuel pressure drop has an obvious influence on the fuel distribution and flow field near the nozzle exit compared with the downstream.For the air-blast atomizer,the spray angle increases compared with the pressure-swirl atomizer for the introduction of swirl air.Furthermore,the spray angle decreases with the air mass rate increasing,and it increases with the fuel mass rate increasing.The distribution of velocity and droplet near the nozzle exit is influenced by the air mass rate,and the fuel mass rate mainly affects the distribution in the downstream.The fuel accumulates in the annular area below the nozzle,and the distribution of it changes little with the development along the axial direction.展开更多
基金financially supported by National Natural Science Foundation of China(Nos.12172379,12322211,and 11925207)。
文摘Mutual effects between a gliding arc(GA)discharge at atmospheric pressure and a premixed CH_(4)/air flame were experimentally investigated.Effects of the flame on the GA were studied using simultaneous measurements of the current,the voltage,and the instantaneous images of the plasma columns.The GA in the flame has a thicker and more diffusive plasma column,and it is more frequently ignited at a smaller breakdown voltage than that in the air.The GA extension velocity and the gliding velocity in the flame are larger than those in the air.The electrode voltage drop of the GA discharge in the flame is about 160 V,whereas that in the air is about 220 V.Compared with the GA in the air,the different features of the GA in the flame can be explained by high-temperature,weakly ionized,and species-abundant environment that are generated by the premixed CH_(4)/air flame.Effects of the gliding arc discharge on the premixed flames were demonstrated using planar laser-induced fluorescence of hydroxyl radicals(OH)and formaldehyde(CH_(2)O).OH and CH_(2)O can be formed in the CH_(4)/air mixture in the presence of the GA due to kinetic effects,and the increase of OH and CH_(2)O shows the great potential of the GA for combustion enhancement.
基金supported by the Fundamental Research Funds for the Central Universities of Chinathe National Magnetic Confined Fusion Energy Program of China (Grant No. 2009GB104005)
文摘In the light of the needs to develop high-performance heat transfer component for nation-level large-scale scientific projects of China,a hypervapotron experimental platform with supply of heat flux 1 10 MW m-2 was established.With this platform,the multiphase flow and heat transfer phenomena on the surface of triangular fin when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence(PLIF) and high-speed photography techniques.The temperature contour on the slice plane of fin symmetry was measured and the heat flux contour was processed based on gradient computation.It is confirmed that:1) PLIF with high-speed photography is very powerful technique to investigate the multiphase flow of hypervapotron quantitatively;2) evaporation is the primary way in heat transfer mechanism of hypervapotron flow under the condition of high heat flux.The techniques and results obtained will provide useful reference in the R&D of hypervapotron technology in China.
基金This work was supported by National Science and Technology Major Project(Project No.2017-Ⅲ-0007 and No.2017-Ⅲ-0002)Youth Innovation Promotion Association,Chinese Academy of Science(No.2019147).
文摘In this work,the effects of fuel temperatures and pressure drops on the flow field and spray characteristics of a pressure-swirl atomizer were discussed using the Particle Imaging Velocimetry(PIV),Planar Laser Induced Fluorescence(PLIF)and Laser Particle Size Analyzer(LPSA)methods.Then the air-blast atomizer was selected to study the interaction of initial atomization and flow field.The effect of fuel-air ratio on the air-blast atomizer were also considered,where the fuel-air ratio was varied by adjusting mass flow rate of the air and fuel respectively.The results show that the spray angle of the pressure-swirl atomizer increases first and changes a little after the pressure drop higher than 0.5 MPa.However,more fuel concentrate on the central region,which is mainly caused by the increase of the proportion of small droplets with lower centrifugal force.The fuel temperature can improve the spray angle only in lower pressure drop,and it has a little effect under higher pressure drops.In addition,the fuel pressure drop has an obvious influence on the fuel distribution and flow field near the nozzle exit compared with the downstream.For the air-blast atomizer,the spray angle increases compared with the pressure-swirl atomizer for the introduction of swirl air.Furthermore,the spray angle decreases with the air mass rate increasing,and it increases with the fuel mass rate increasing.The distribution of velocity and droplet near the nozzle exit is influenced by the air mass rate,and the fuel mass rate mainly affects the distribution in the downstream.The fuel accumulates in the annular area below the nozzle,and the distribution of it changes little with the development along the axial direction.