An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the ...An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled f'mite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage.展开更多
The variations of extreme climate events such as cold wave, typhoon, hot and cold days have been discussed using the recent 45-year data. The reductions of nationwide cold wave activities and annual cold day number in...The variations of extreme climate events such as cold wave, typhoon, hot and cold days have been discussed using the recent 45-year data. The reductions of nationwide cold wave activities and annual cold day number in northern China all have close relationship with warming winters, especially during 1980s and early 1990s. Decrements of annual hot day number are associated with cooling summers. The typhoon variation has connection with the tropical Pacific sea surface temperature conditions. The increments of drought/flood events since 1980s may be connected indirectly with climate warming up significantly since 1980s. The climate variability of these extreme climate events has decreased with time since 1980s.展开更多
Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the character...Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.展开更多
Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked...Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked to the dynamic characteristics of silt in this region. To analyze these couple effects on the dynamic characteristics of silt, a series of tests(i.e., freeze-thaw cycling tests, vibration triaxial tests and ultrasonic wave velocity tests) were conducted and two kinds of silt(i.e., salt-free and 3%-salt silt) were designed. The results indicate that the dynamic shear strength and dynamic modulus decrease with increasing freeze-thaw cycles, while the damping ratio simultaneously increases. Furthermore, compared to salt-free silt, the decrement of dynamic shear strength and dynamic modulus of silt with 3% salt is more significant, but the damping ratio of 3%-salt silt is larger. In ultrasonic wave velocity tests, ultrasonic wave velocity of frozen soil specimens decreases as the number of freeze-thaw cycles increases. Based on the results of ultrasonic wave velocity tests, a preliminary model is proposed to evaluate damage of silt through field measurement ultrasonic data. The study could provide a theoretical basis for the treatment of silty soil highway.展开更多
In this paper, a model of overtopping risk under the joint effects of floods and wind waves, which is based on risk analysis theory and takes into account the uncertainties of floods, wind waves, reservoir capacity an...In this paper, a model of overtopping risk under the joint effects of floods and wind waves, which is based on risk analysis theory and takes into account the uncertainties of floods, wind waves, reservoir capacity and discharge capacity of the spillway, is proposed and applied to the Chengbihe Reservoir in Baise City in Guangxi Zhuang Autonomous Region. The simulated results indicate that the flood control limiting level can be raised by 0.40 m under the condition that the reservoir overtopping risk is controlled within a mean variance of 5×10-6. As a result, the reservoir storage will increase to 16 million m3 and electrical energy generation and other functions of the reservoir will also increase greatly.展开更多
基金Project supported by the National Nature Science Foundation of China (Grant No.50479068) the Program for New Century Excellent Talents in Universities (Grant No. NCET-04-0494).
文摘An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled f'mite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage.
文摘The variations of extreme climate events such as cold wave, typhoon, hot and cold days have been discussed using the recent 45-year data. The reductions of nationwide cold wave activities and annual cold day number in northern China all have close relationship with warming winters, especially during 1980s and early 1990s. Decrements of annual hot day number are associated with cooling summers. The typhoon variation has connection with the tropical Pacific sea surface temperature conditions. The increments of drought/flood events since 1980s may be connected indirectly with climate warming up significantly since 1980s. The climate variability of these extreme climate events has decreased with time since 1980s.
文摘Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.
基金Project(2018YFB1600100) supported by the National Key Research and Development Project of ChinaProjects(51778346, 51508310) supported by the National Natural Science Foundation of ChinaProject(2019GSF111007) supported by Key Research and Development Project of Shandong Province, China。
文摘Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked to the dynamic characteristics of silt in this region. To analyze these couple effects on the dynamic characteristics of silt, a series of tests(i.e., freeze-thaw cycling tests, vibration triaxial tests and ultrasonic wave velocity tests) were conducted and two kinds of silt(i.e., salt-free and 3%-salt silt) were designed. The results indicate that the dynamic shear strength and dynamic modulus decrease with increasing freeze-thaw cycles, while the damping ratio simultaneously increases. Furthermore, compared to salt-free silt, the decrement of dynamic shear strength and dynamic modulus of silt with 3% salt is more significant, but the damping ratio of 3%-salt silt is larger. In ultrasonic wave velocity tests, ultrasonic wave velocity of frozen soil specimens decreases as the number of freeze-thaw cycles increases. Based on the results of ultrasonic wave velocity tests, a preliminary model is proposed to evaluate damage of silt through field measurement ultrasonic data. The study could provide a theoretical basis for the treatment of silty soil highway.
基金supported by the National Natural Science Foundation of China (Grant No 50609005)the Science Foundation of Guangxi Education Department (Grant No 200708LX099)the Science Foundation of Guangxi University (Grant No X071096)
文摘In this paper, a model of overtopping risk under the joint effects of floods and wind waves, which is based on risk analysis theory and takes into account the uncertainties of floods, wind waves, reservoir capacity and discharge capacity of the spillway, is proposed and applied to the Chengbihe Reservoir in Baise City in Guangxi Zhuang Autonomous Region. The simulated results indicate that the flood control limiting level can be raised by 0.40 m under the condition that the reservoir overtopping risk is controlled within a mean variance of 5×10-6. As a result, the reservoir storage will increase to 16 million m3 and electrical energy generation and other functions of the reservoir will also increase greatly.