A two-dimensional hybrid simulation scheme is proposed to study the characteristics of dual-frequency (DF) capacitively coupled plasma (CCP) discharge based on the geometry of real device. Given the experimental p...A two-dimensional hybrid simulation scheme is proposed to study the characteristics of dual-frequency (DF) capacitively coupled plasma (CCP) discharge based on the geometry of real device. Given the experimental parameters for argon plasma, the output from the fluid module such as ion density, number flux, electron temperature and the Monte-Carlo collision (MCC) results of ion energy distribution function (IEDF) as well as electron energy distribution function (EEDF) are obtained and discussed in detail. A novel complete floating double probe is designed to measure both density and temperature of electron and a quadrupole mass spectrometer is also equipped for IEDF investigations. The measurements on the density of bulk plasma, electron temperature and IEDF agree well, qualitatively, with the simulated results. A comparison with experimental results indicates that, since the structure of real device is taken into account, this model is capable of describing the global dynamic characteristics occurred in DF-CCP and presenting more reliable results than the model with an ideal chamber structure.展开更多
Application of the Langmuir probe in plasma circumstance for deposition of diamond-like carbon (DLC) thin films usually faces the problem of rapid failure of the probe due to surface insulative coating. In this pape...Application of the Langmuir probe in plasma circumstance for deposition of diamond-like carbon (DLC) thin films usually faces the problem of rapid failure of the probe due to surface insulative coating. In this paper, we circumvent the problem by using the floating harmonic probe technique. In the real circumstance of DLC film deposition, the floating harmonic probe worked reliably over 3 hours, correctly indicating the ion density and electron temperature. The technique was practically used to measure the ion density and electron temperature in DLC film deposition processes using the microwave ECR plasma enhanced sputtering. Combined with the Raman spectroscopic characterization of the films, the conditions for deposition of DLC films were investigated.展开更多
The characteristic parameters were measured with floating double probe method when cold plasma was interacting with catalysts, such as MoO3/Al2O3, NiY, Pd/Al2O3, which were used in the conversion of natural gas to C2 ...The characteristic parameters were measured with floating double probe method when cold plasma was interacting with catalysts, such as MoO3/Al2O3, NiY, Pd/Al2O3, which were used in the conversion of natural gas to C2 hydrocarbons through electrical field enhanced plasma catalysis. These parameters were compared in different input voltage, different atmosphere, before and after reaction in plasma field. The interaction between catalysts and cold plasma was also investigated. This confirm that cold plasma can enhanced catalysis effect.展开更多
基金supported by National Natural Science Foundation of China (No. 10635010)Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20090041110026)
文摘A two-dimensional hybrid simulation scheme is proposed to study the characteristics of dual-frequency (DF) capacitively coupled plasma (CCP) discharge based on the geometry of real device. Given the experimental parameters for argon plasma, the output from the fluid module such as ion density, number flux, electron temperature and the Monte-Carlo collision (MCC) results of ion energy distribution function (IEDF) as well as electron energy distribution function (EEDF) are obtained and discussed in detail. A novel complete floating double probe is designed to measure both density and temperature of electron and a quadrupole mass spectrometer is also equipped for IEDF investigations. The measurements on the density of bulk plasma, electron temperature and IEDF agree well, qualitatively, with the simulated results. A comparison with experimental results indicates that, since the structure of real device is taken into account, this model is capable of describing the global dynamic characteristics occurred in DF-CCP and presenting more reliable results than the model with an ideal chamber structure.
文摘Application of the Langmuir probe in plasma circumstance for deposition of diamond-like carbon (DLC) thin films usually faces the problem of rapid failure of the probe due to surface insulative coating. In this paper, we circumvent the problem by using the floating harmonic probe technique. In the real circumstance of DLC film deposition, the floating harmonic probe worked reliably over 3 hours, correctly indicating the ion density and electron temperature. The technique was practically used to measure the ion density and electron temperature in DLC film deposition processes using the microwave ECR plasma enhanced sputtering. Combined with the Raman spectroscopic characterization of the films, the conditions for deposition of DLC films were investigated.
基金Supports from the National Natural Science Foundation of China (No 29776037) and Research Foundation of SINOPEC (X500005).
文摘The characteristic parameters were measured with floating double probe method when cold plasma was interacting with catalysts, such as MoO3/Al2O3, NiY, Pd/Al2O3, which were used in the conversion of natural gas to C2 hydrocarbons through electrical field enhanced plasma catalysis. These parameters were compared in different input voltage, different atmosphere, before and after reaction in plasma field. The interaction between catalysts and cold plasma was also investigated. This confirm that cold plasma can enhanced catalysis effect.