In traditional database applications, queries intend to retrieve data satisfying precise conditions. As a result, thousands of data can be retrieved (overabundant answer) or, even worse, no data at all (empty answer)....In traditional database applications, queries intend to retrieve data satisfying precise conditions. As a result, thousands of data can be retrieved (overabundant answer) or, even worse, no data at all (empty answer). In both cases, the queries must be reformulated to produce more significant results and, typically, many related queries are submitted by a user before he can be finally satisfied. To overcome these problems, this paper proposes a unified solution in the framework of flexible queries with fuzzy semantics. This solution, based on the concept of semantic proximity and implemented in a tool for flexible query answering, allows the automatic reformulation of queries with empty or overabundant answers.展开更多
基金supported by CNPq(Brazilian National Counsel of Technological and Scientific Development),under grant numbers 305484/2012-5 and 104200/2013-8.
文摘In traditional database applications, queries intend to retrieve data satisfying precise conditions. As a result, thousands of data can be retrieved (overabundant answer) or, even worse, no data at all (empty answer). In both cases, the queries must be reformulated to produce more significant results and, typically, many related queries are submitted by a user before he can be finally satisfied. To overcome these problems, this paper proposes a unified solution in the framework of flexible queries with fuzzy semantics. This solution, based on the concept of semantic proximity and implemented in a tool for flexible query answering, allows the automatic reformulation of queries with empty or overabundant answers.