High performance Pt counter electrode is prepared by using vacuum thermal decomposition at a relatively low (120℃) temperature on a flexible polyethylene naphthalate substrate coated with indium-doped tin oxide for u...High performance Pt counter electrode is prepared by using vacuum thermal decomposition at a relatively low (120℃) temperature on a flexible polyethylene naphthalate substrate coated with indium-doped tin oxide for use in flexible dye-sensitized solar cells.The obtained Pt counter electrode shows a good chemical stability,high light transmittance,and high electrocatalytic activity for the I3-/I-redox reaction.The energy conversion efficiency of a flexible dye-sensitized solar cell based on the prepared Pt counter electrode and a TiO 2 /Ti photoanode reaches 5.14% under a simulated solar light irradiation with intensity of 100 mW cm-2.展开更多
A novel low temperature method was used to prepare the mesoporous carbon(MC) counter electrode(CE) on indium-doped tin oxide coated polyethylene naphthalate(ITO-PEN) for flexible dye-sensitized solar cells(DSSC...A novel low temperature method was used to prepare the mesoporous carbon(MC) counter electrode(CE) on indium-doped tin oxide coated polyethylene naphthalate(ITO-PEN) for flexible dye-sensitized solar cells(DSSCs).The obtained flexible MC CEs with carbon loading of 280μg cm^(-2) were characterized by SEM,XRD and electrochemical impedance.The light-to-electricity conversion efficiency of the DSSC fabricated with the prepared flexible MC CE was 86%of that of DSSC based on the decomposited Pt CE.展开更多
Nanocrystalline TiO2 thin films were successfully prepared by a new “water-cooked” method on both conductive glass substrates and flexible substrates at low temperature. Dye-sensitized solar cells based on these fil...Nanocrystalline TiO2 thin films were successfully prepared by a new “water-cooked” method on both conductive glass substrates and flexible substrates at low temperature. Dye-sensitized solar cells based on these films have exhibited high overall light-to-electricity conversion efficiencies of 4.67 % and 1.94 % on conductive glass substrate and flexible substrate, respectively, under the illumination at 100 mW/cm2.展开更多
采用电沉积法,在柔性不锈钢网基底上制备了ZnO纳米棒阵列,随后旋涂P25浆料,最终经退火后得到了ZnO纳米棒阵列/TiO_2纳米粒子的复合结构薄膜,详细探讨了TiO_2纳米粒子的填充,初级ZnO纳米棒阵列的形貌,P25浆料的旋涂次数以及表面活性剂PE...采用电沉积法,在柔性不锈钢网基底上制备了ZnO纳米棒阵列,随后旋涂P25浆料,最终经退火后得到了ZnO纳米棒阵列/TiO_2纳米粒子的复合结构薄膜,详细探讨了TiO_2纳米粒子的填充,初级ZnO纳米棒阵列的形貌,P25浆料的旋涂次数以及表面活性剂PEG添加量等制备条件对复合结构光阳极形貌及光电性能的影响。研究表明:TiO_2纳米粒子的引入能有效提高光阳极的比表面积,增强半导体与染料的耦合能力,ZnO纳米棒阵列能够为电子提供快速传输的通道。最佳制备条件为:初级ZnO纳米棒沉积次数为两次,浆料浓度为1 g/50 m L,旋涂浆料次数为三次,PEG添加量为4 g/100 m L,制备的复合结构DSSC的光电转换效率较单一纳米棒阵列有一定的提高。展开更多
基金supported by the National High Technology Research and Development Program of China(2009AA03Z217)the National Natural Science Foundation of China(90922028,51002053)
文摘High performance Pt counter electrode is prepared by using vacuum thermal decomposition at a relatively low (120℃) temperature on a flexible polyethylene naphthalate substrate coated with indium-doped tin oxide for use in flexible dye-sensitized solar cells.The obtained Pt counter electrode shows a good chemical stability,high light transmittance,and high electrocatalytic activity for the I3-/I-redox reaction.The energy conversion efficiency of a flexible dye-sensitized solar cell based on the prepared Pt counter electrode and a TiO 2 /Ti photoanode reaches 5.14% under a simulated solar light irradiation with intensity of 100 mW cm-2.
基金supported by the National Nature Science Foundation of China(No.20975012)the 111 Project (B07012)+1 种基金the Major State Basic Research Development Program(No.2006CB202605)the High-Tech Research and Development Program of China(No.2007AA05Z439)
文摘A novel low temperature method was used to prepare the mesoporous carbon(MC) counter electrode(CE) on indium-doped tin oxide coated polyethylene naphthalate(ITO-PEN) for flexible dye-sensitized solar cells(DSSCs).The obtained flexible MC CEs with carbon loading of 280μg cm^(-2) were characterized by SEM,XRD and electrochemical impedance.The light-to-electricity conversion efficiency of the DSSC fabricated with the prepared flexible MC CE was 86%of that of DSSC based on the decomposited Pt CE.
基金The authors appreciate the generous financial support of this work by the Major State Basic Research Development Program(Grant No.G200028205)Innovative Foundation of the Chinese Academy of Science(Grant No.KGCX2-303-02)+1 种基金the National Natural Science Foundation of China(Grant No.50221201)High-Tech Research and Development of China Program(Grant No.2002 AA302403).
文摘Nanocrystalline TiO2 thin films were successfully prepared by a new “water-cooked” method on both conductive glass substrates and flexible substrates at low temperature. Dye-sensitized solar cells based on these films have exhibited high overall light-to-electricity conversion efficiencies of 4.67 % and 1.94 % on conductive glass substrate and flexible substrate, respectively, under the illumination at 100 mW/cm2.
基金National Natural Science Foundation of China(51172237)National Basic Research Program of China(2011CBA00700)+2 种基金National High Technology Research and Development Program of China(2011AA050527)Anhui Provincial International Science and Technology Cooperation Program(10080703021)Knowledge Innovation Program of the Chinese Academy ofSciences
文摘采用电沉积法,在柔性不锈钢网基底上制备了ZnO纳米棒阵列,随后旋涂P25浆料,最终经退火后得到了ZnO纳米棒阵列/TiO_2纳米粒子的复合结构薄膜,详细探讨了TiO_2纳米粒子的填充,初级ZnO纳米棒阵列的形貌,P25浆料的旋涂次数以及表面活性剂PEG添加量等制备条件对复合结构光阳极形貌及光电性能的影响。研究表明:TiO_2纳米粒子的引入能有效提高光阳极的比表面积,增强半导体与染料的耦合能力,ZnO纳米棒阵列能够为电子提供快速传输的通道。最佳制备条件为:初级ZnO纳米棒沉积次数为两次,浆料浓度为1 g/50 m L,旋涂浆料次数为三次,PEG添加量为4 g/100 m L,制备的复合结构DSSC的光电转换效率较单一纳米棒阵列有一定的提高。