期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进的边缘检测蚁群算法的大米轮廓检测
被引量:
5
1
作者
肖曦
彭良玉
《微型机与应用》
2012年第13期42-45,共4页
在蚁群算法的基础上针对大米轮廓检测提出了一种改进的边缘检测蚁群算法。该算法能有效地检测出米粒的边缘信息,解决了传统大米颗粒检测方法的不稳定和不精确等问题。与此同时,还将其结果与原蚁群算法、Roberts、Sobel和Prewitt等边缘...
在蚁群算法的基础上针对大米轮廓检测提出了一种改进的边缘检测蚁群算法。该算法能有效地检测出米粒的边缘信息,解决了传统大米颗粒检测方法的不稳定和不精确等问题。与此同时,还将其结果与原蚁群算法、Roberts、Sobel和Prewitt等边缘检测算子对图像处理的结果进行了研究对比,实验结果表明,采用改进的边缘检测蚁群算法对大米粒形的检测效果较好,正确率较高,且具有适应性强、效率高等特点。
展开更多
关键词
蚁群算法
大米粒形
图像分割
边缘检测
下载PDF
职称材料
题名
基于改进的边缘检测蚁群算法的大米轮廓检测
被引量:
5
1
作者
肖曦
彭良玉
机构
湖南师范大学物理与信息科学学院
出处
《微型机与应用》
2012年第13期42-45,共4页
文摘
在蚁群算法的基础上针对大米轮廓检测提出了一种改进的边缘检测蚁群算法。该算法能有效地检测出米粒的边缘信息,解决了传统大米颗粒检测方法的不稳定和不精确等问题。与此同时,还将其结果与原蚁群算法、Roberts、Sobel和Prewitt等边缘检测算子对图像处理的结果进行了研究对比,实验结果表明,采用改进的边缘检测蚁群算法对大米粒形的检测效果较好,正确率较高,且具有适应性强、效率高等特点。
关键词
蚁群算法
大米粒形
图像分割
边缘检测
Keywords
ant
colony
algorithm
flee
figure
image
segmentation
edge
detection
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进的边缘检测蚁群算法的大米轮廓检测
肖曦
彭良玉
《微型机与应用》
2012
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部