The controllable active thermo-atmosphere combustor(CATAC) has become a utilizable and effective facility because it benefits the optical diagnostics and modeling. This paper presents the modeling research of the auto...The controllable active thermo-atmosphere combustor(CATAC) has become a utilizable and effective facility because it benefits the optical diagnostics and modeling. This paper presents the modeling research of the auto-ignition and flames of the H2/N2(H2/CH4/N2,or H2/H2O2/N2) mixture on a CATAC,and shows curves varying with temperatures of auto-ignition delay,the height of the site of auto-ignition of lifted flames,and flame lift-off height. The results of auto-ignition delay and the lift-off height are compared the experimental results to validate the model. A turning point can be seen on each curve,identified with criterion temperature. It can be concluded that when the co-flow temperature is higher than the criterion temperature,the auto-ignition and lifted flame of the mixture are not stable. Conversely,below the criterion temperature,the mixture will auto-ignite in a stable fashion. Stabilization mechanisms of auto-ignition and lifted flames are analyzed in terms of the criterion temperature.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2007CB210005)the National Natural Science Foundation of China (Nos. 50676055 and 50946052)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 200802471052)the Shanghai Rising-Star Program (No.07QA14055),China
文摘The controllable active thermo-atmosphere combustor(CATAC) has become a utilizable and effective facility because it benefits the optical diagnostics and modeling. This paper presents the modeling research of the auto-ignition and flames of the H2/N2(H2/CH4/N2,or H2/H2O2/N2) mixture on a CATAC,and shows curves varying with temperatures of auto-ignition delay,the height of the site of auto-ignition of lifted flames,and flame lift-off height. The results of auto-ignition delay and the lift-off height are compared the experimental results to validate the model. A turning point can be seen on each curve,identified with criterion temperature. It can be concluded that when the co-flow temperature is higher than the criterion temperature,the auto-ignition and lifted flame of the mixture are not stable. Conversely,below the criterion temperature,the mixture will auto-ignite in a stable fashion. Stabilization mechanisms of auto-ignition and lifted flames are analyzed in terms of the criterion temperature.