期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
增强细节信息特征提取的鱼类个体识别算法 被引量:1
1
作者 王伟芳 殷健豪 +1 位作者 高春奇 刘梁 《现代电子技术》 北大核心 2024年第2期183-186,共4页
在鱼类个体识别的实际应用场景中,由于水下环境噪声大、鱼体角度倾斜以及类内特征差异不明显,导致卷积神经网络特征提取能力低下,影响识别准确性。针对该问题,提出一种增强细节信息特征提取的鱼类个体识别算法(FishNetv1)。改进YOLOv5... 在鱼类个体识别的实际应用场景中,由于水下环境噪声大、鱼体角度倾斜以及类内特征差异不明显,导致卷积神经网络特征提取能力低下,影响识别准确性。针对该问题,提出一种增强细节信息特征提取的鱼类个体识别算法(FishNetv1)。改进YOLOv5网络并建立损失函数,优化鱼类个体目标的检测结果。主干网络在MobileNet‐v1的基础上完成优化,改进深度卷积层,更新ReLU激活函数,使用Leaky ReLU保留负值特征信息,实现特征信息的获取。在网络结构末端全连接层前增加特征加权层,去除卷积神经网络中常用的池化层,完成图像细节信息的增强和特征提取。实验结果表明,所设计模型在DLOUFish数据集上的平均准确率为92.46%,最高准确率达到95.69%。 展开更多
关键词 鱼类个体识别 关键点检测 特征提取 MobileNet‐v1 YOLOv5网络 特征加权
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部