最小二乘逆时偏移(Least-Square Reverse Time Migration,LSRTM)相比于常规偏移具有更高的成像分辨率、振幅保幅性及均衡性等优势,是当前研究的热点之一.然而,目前LSRTM算法大多是基于二阶常密度标量声波方程建立的,忽略了密度变化对振...最小二乘逆时偏移(Least-Square Reverse Time Migration,LSRTM)相比于常规偏移具有更高的成像分辨率、振幅保幅性及均衡性等优势,是当前研究的热点之一.然而,目前LSRTM算法大多是基于二阶常密度标量声波方程建立的,忽略了密度变化对振幅的影响,因而基于振幅匹配策略的常规LSRTM很难在变密度介质下取得保真的成像结果.一阶速度-应力方程能够很好地处理变密度介质,但简单地将一阶速度-应力方程应用到LSRTM中缺乏理论基础.为此,本文从LSRTM的正问题入手,提出了基于交错网格的一阶速度-应力方程LSRTM理论方法.首先将一阶波动方程线性化,建立了一阶方程LSRTM的目标泛函,随后推导其伴随方程,并借助伴随状态法给出了迭代更新流程,最终建立了基于一阶速度-应力方程LSRTM的理论框架.进一步,通过在相位编码LSRTM中引入随机最优化思想,极大地减小了计算量、提高了计算效率.最后,通过模型试算验证了本算法的正确性和有效性.展开更多
从TTI介质一阶应力—速度方程出发,利用旋转交错网格高阶有限差分方法,将非分裂完全匹配层(Non-spliting Perfect Match Layer,简称NPML)边界吸收条件和自由边界条件相结合形成组合边界条件,进行了二维三分量TTI介质弹性波场数值模拟。...从TTI介质一阶应力—速度方程出发,利用旋转交错网格高阶有限差分方法,将非分裂完全匹配层(Non-spliting Perfect Match Layer,简称NPML)边界吸收条件和自由边界条件相结合形成组合边界条件,进行了二维三分量TTI介质弹性波场数值模拟。波场快照和炮记录表明:①采用非分裂式边界条件能较好地消除近地表大角度入射波和瞬逝波;②组合边界条件与NPML边界吸收条件相比,不仅有效地压制了边界反射,同时实现了对自由地表的模拟,获得了丰富的全波场信息,其中在地表产生的PS转换横波作为一种特殊的横波现象,可为近地表结构调查以及多波波场分析等提供有益信息;③自由地表引起的面波以及多次波对偏移结果有着重要影响,因此在实际地震资料处理中应当充分考虑自由地表条件对波场的影响效应。数值模拟结果证实了组合边界条件下二维三分量TTI介质波场数值模拟方法的可行性和正确性。展开更多
文摘最小二乘逆时偏移(Least-Square Reverse Time Migration,LSRTM)相比于常规偏移具有更高的成像分辨率、振幅保幅性及均衡性等优势,是当前研究的热点之一.然而,目前LSRTM算法大多是基于二阶常密度标量声波方程建立的,忽略了密度变化对振幅的影响,因而基于振幅匹配策略的常规LSRTM很难在变密度介质下取得保真的成像结果.一阶速度-应力方程能够很好地处理变密度介质,但简单地将一阶速度-应力方程应用到LSRTM中缺乏理论基础.为此,本文从LSRTM的正问题入手,提出了基于交错网格的一阶速度-应力方程LSRTM理论方法.首先将一阶波动方程线性化,建立了一阶方程LSRTM的目标泛函,随后推导其伴随方程,并借助伴随状态法给出了迭代更新流程,最终建立了基于一阶速度-应力方程LSRTM的理论框架.进一步,通过在相位编码LSRTM中引入随机最优化思想,极大地减小了计算量、提高了计算效率.最后,通过模型试算验证了本算法的正确性和有效性.
文摘从TTI介质一阶应力—速度方程出发,利用旋转交错网格高阶有限差分方法,将非分裂完全匹配层(Non-spliting Perfect Match Layer,简称NPML)边界吸收条件和自由边界条件相结合形成组合边界条件,进行了二维三分量TTI介质弹性波场数值模拟。波场快照和炮记录表明:①采用非分裂式边界条件能较好地消除近地表大角度入射波和瞬逝波;②组合边界条件与NPML边界吸收条件相比,不仅有效地压制了边界反射,同时实现了对自由地表的模拟,获得了丰富的全波场信息,其中在地表产生的PS转换横波作为一种特殊的横波现象,可为近地表结构调查以及多波波场分析等提供有益信息;③自由地表引起的面波以及多次波对偏移结果有着重要影响,因此在实际地震资料处理中应当充分考虑自由地表条件对波场的影响效应。数值模拟结果证实了组合边界条件下二维三分量TTI介质波场数值模拟方法的可行性和正确性。