First principle computational tensile tests (FPCTT) are performed to the Al ∑5 grain boundaries (GBs) with and without substitution or interstitial Si impurity. The obtained stress-strain relationships and atomic...First principle computational tensile tests (FPCTT) are performed to the Al ∑5 grain boundaries (GBs) with and without substitution or interstitial Si impurity. The obtained stress-strain relationships and atomic configurations demonstrate that the Al ∑5 GBs with and without substitutional or interstitial Si impurity show different fracture modes. The mechanisms of the different fracture modes are analyzed based on the charge density and the density of states. The results show that the charge redistributions of the atoms in the vicinity of GBs and the covalent interactions between Si and its neighboring Al atoms determine the fracture modes.展开更多
This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7...This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5 GPa for bcc Fe, and 48.1, 34.6, 51.2 GPa for fcc Fe in the [001], [110] and [111] directions, respectively. For bcc Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction due to the formation of an instable saddle-point 'bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak.展开更多
基金supported by National Basic Research Program of China(No.2011CB606403)Project of Education Department of Liaoning Province,China(No.L2010179)
文摘First principle computational tensile tests (FPCTT) are performed to the Al ∑5 grain boundaries (GBs) with and without substitution or interstitial Si impurity. The obtained stress-strain relationships and atomic configurations demonstrate that the Al ∑5 GBs with and without substitutional or interstitial Si impurity show different fracture modes. The mechanisms of the different fracture modes are analyzed based on the charge density and the density of states. The results show that the charge redistributions of the atoms in the vicinity of GBs and the covalent interactions between Si and its neighboring Al atoms determine the fracture modes.
基金supported by the National Natural Science Foundation of China(Grant No 50771008)New Century Excellent Talents in University of China
文摘This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5 GPa for bcc Fe, and 48.1, 34.6, 51.2 GPa for fcc Fe in the [001], [110] and [111] directions, respectively. For bcc Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction due to the formation of an instable saddle-point 'bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak.