The materials with thermal insulating and fre-retardant properties are highly demanded for architectures to improve the energy efficiency.The applications of conventional inorganic insulating materials such as silica ...The materials with thermal insulating and fre-retardant properties are highly demanded for architectures to improve the energy efficiency.The applications of conventional inorganic insulating materials such as silica aerogels are restricted by their mechanical fragility and organic insulating materials are either easily ignitable or exhibit unsatisfactory thermal insulation performance.Here,we report an organic/inorganic composite aerogel with integrated double network structure,in which silica constituent homogeneously distribute in the anisotropic polyimide nanofber aerogel matrix and strong interfacial effect is formed between two components.The integrated binary network endows the polyimide/silica composite aerogels with outstanding compressibility and flexibility even with a high inorganic content of 60%,which can withstand 500 cyclic fatigue tests at a compressive strain of 50%in the radial direction.The resulting composite aerogel exhibits a combination of outstanding insulating performance with a low thermal conductivity(21.2 mW m^(-1)K^(-1))and excellent resistance to a 1200℃flame without disintegration.The high-performance polyimide/silica aerogels can decrease the risk brought by the collapse of reinforced concrete structures in a fre,demonstrating great potential as efficient building materials.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(2232019A3-03)the National Natural Science Foundation of China(52073053,21674019)+3 种基金Shanghai Rising-Star Program(21QA1400300)Shanghai Municipal Education Commission(17CG33)Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-03-E00108)Science and Technology Commission of Shanghai Municipality(20520741100)。
文摘The materials with thermal insulating and fre-retardant properties are highly demanded for architectures to improve the energy efficiency.The applications of conventional inorganic insulating materials such as silica aerogels are restricted by their mechanical fragility and organic insulating materials are either easily ignitable or exhibit unsatisfactory thermal insulation performance.Here,we report an organic/inorganic composite aerogel with integrated double network structure,in which silica constituent homogeneously distribute in the anisotropic polyimide nanofber aerogel matrix and strong interfacial effect is formed between two components.The integrated binary network endows the polyimide/silica composite aerogels with outstanding compressibility and flexibility even with a high inorganic content of 60%,which can withstand 500 cyclic fatigue tests at a compressive strain of 50%in the radial direction.The resulting composite aerogel exhibits a combination of outstanding insulating performance with a low thermal conductivity(21.2 mW m^(-1)K^(-1))and excellent resistance to a 1200℃flame without disintegration.The high-performance polyimide/silica aerogels can decrease the risk brought by the collapse of reinforced concrete structures in a fre,demonstrating great potential as efficient building materials.