In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation o...In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.展开更多
This paper studies the strong n(n =—1,0)-discount and finite horizon criteria for continuoustime Markov decision processes in Polish spaces.The corresponding transition rates are allowed to be unbounded,and the rewar...This paper studies the strong n(n =—1,0)-discount and finite horizon criteria for continuoustime Markov decision processes in Polish spaces.The corresponding transition rates are allowed to be unbounded,and the reward rates may have neither upper nor lower bounds.Under mild conditions,the authors prove the existence of strong n(n =—1,0)-discount optimal stationary policies by developing two equivalence relations:One is between the standard expected average reward and strong—1-discount optimality,and the other is between the bias and strong 0-discount optimality.The authors also prove the existence of an optimal policy for a finite horizon control problem by developing an interesting characterization of a canonical triplet.展开更多
基金This work was supported by the National Science Foundation (ECS-0501451)Army Research Office (W91NF-05-1-0314).
文摘In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.
基金supported by the National Natural Science Foundation of China under Grant Nos.61374080 and 61374067the Natural Science Foundation of Zhejiang Province under Grant No.LY12F03010+1 种基金the Natural Science Foundation of Ningbo under Grant No.2012A610032Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This paper studies the strong n(n =—1,0)-discount and finite horizon criteria for continuoustime Markov decision processes in Polish spaces.The corresponding transition rates are allowed to be unbounded,and the reward rates may have neither upper nor lower bounds.Under mild conditions,the authors prove the existence of strong n(n =—1,0)-discount optimal stationary policies by developing two equivalence relations:One is between the standard expected average reward and strong—1-discount optimality,and the other is between the bias and strong 0-discount optimality.The authors also prove the existence of an optimal policy for a finite horizon control problem by developing an interesting characterization of a canonical triplet.