Let F be a field with characteristic 0, V = Fn the n-dimensional vector space over F and let G be a finite pseudo-reflection group which acts on V . Let χ : G→ F* be a 1- dimensional representation of G. In this a...Let F be a field with characteristic 0, V = Fn the n-dimensional vector space over F and let G be a finite pseudo-reflection group which acts on V . Let χ : G→ F* be a 1- dimensional representation of G. In this article we show that χ(g) = (detg)α(0 ≤ α ≤ r - 1), where g ∈ G and r is the order of g. In addition, we characterize the relation between the relative invariants and the invariants of the group G, and then we use Molien’s Theorem of invariants to compute the Poincar′e series of relative invariants.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.10771023)
文摘Let F be a field with characteristic 0, V = Fn the n-dimensional vector space over F and let G be a finite pseudo-reflection group which acts on V . Let χ : G→ F* be a 1- dimensional representation of G. In this article we show that χ(g) = (detg)α(0 ≤ α ≤ r - 1), where g ∈ G and r is the order of g. In addition, we characterize the relation between the relative invariants and the invariants of the group G, and then we use Molien’s Theorem of invariants to compute the Poincar′e series of relative invariants.
基金supported by the Ph.D.Programs Foundation of Ministry of Education of China Grant(20100181110073)Science and Technology Research Projects of Chongqing Education Commission(KJ121316)~~