This paper focuses on the lateral buckling of laterally-unrestrained aluminum beams subjected to a concentrated, uniformly loading; pure-bending action. The design methods of lateral stability of aluminum beams in the...This paper focuses on the lateral buckling of laterally-unrestrained aluminum beams subjected to a concentrated, uniformly loading; pure-bending action. The design methods of lateral stability of aluminum beams in the current codes are discussed. The influence of material property on the lateral buckling of aluminum beams is investigated with finite element analysis (FEA) methods. Some numerical examples are given,; the results from current codes are compared with the FEA solutions. The design method on lateral stability of steel beams specified in the Chinese standard GB 50017-2003 is modified to calibrate the stability factors of aluminum beams according to the European code, British code,; American code,; the modified method is verified by FEA results. Through comparison with the available test results, the modified design method for overall stability of aluminum bending members is proposed in this paper; proved applicable in the design of lateral stability of aluminum beams.展开更多
Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements beco...Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.展开更多
文摘This paper focuses on the lateral buckling of laterally-unrestrained aluminum beams subjected to a concentrated, uniformly loading; pure-bending action. The design methods of lateral stability of aluminum beams in the current codes are discussed. The influence of material property on the lateral buckling of aluminum beams is investigated with finite element analysis (FEA) methods. Some numerical examples are given,; the results from current codes are compared with the FEA solutions. The design method on lateral stability of steel beams specified in the Chinese standard GB 50017-2003 is modified to calibrate the stability factors of aluminum beams according to the European code, British code,; American code,; the modified method is verified by FEA results. Through comparison with the available test results, the modified design method for overall stability of aluminum bending members is proposed in this paper; proved applicable in the design of lateral stability of aluminum beams.
基金supported by Hebei Excellent Youth Fund of Science and Technology Research for Colleges and Universities of China(Grant NoY2012035)
文摘Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.