期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于细粒度特征提纯的穿戴目标快速检测方法
1
作者 韩晓微 吴浩铭 +2 位作者 周育竹 谢英红 贾旭 《沈阳大学学报(自然科学版)》 CAS 2024年第4期321-330,共10页
为了解决人体穿戴目标的视觉检测中尺寸变化、光线明暗、部分遮挡,尤其是相似目标区分等导致的识别速度慢、抗干扰能力差、误检漏检等问题,提出了一种基于细粒度特征提纯的穿戴目标快速检测方法(fast fine-grained feature with vision ... 为了解决人体穿戴目标的视觉检测中尺寸变化、光线明暗、部分遮挡,尤其是相似目标区分等导致的识别速度慢、抗干扰能力差、误检漏检等问题,提出了一种基于细粒度特征提纯的穿戴目标快速检测方法(fast fine-grained feature with vision transformer,F 3ViT),在CBAM结构中增加跳跃连接,获取具有空间与通道双重特性的特征图,同时保留了更丰富的原始信息;融合自注意力机制和卷积神经网络,提升主干网络对于全局信息的感知;设计了一种有利于多尺寸目标检测的特征金字塔网络,同时提取浅层位置信息和深层语义信息,大幅提高了检测精度。在MS COCO数据集上进行了消融实验,验证了各个模块对网络的影响,同时在对比实验中证明了所提方法具有有效性和先进性。在MS COCO 2017数据集上AP50值达到60.5,AP值达到35.0,检测速度5.7 ms。对比YOLOv5s在精度相似的同时检测速度提高18.6%,算力需求降低33.3%,参数量降低16.7%。本方法在高空安全带数据集上的AP值达到62.5,优于主流深度学习的目标检测方法。 展开更多
关键词 深度学习 机器视觉 注意力机制 细粒度目标检测 穿戴目标检测
下载PDF
基于YOLOv5的装载机物料细粒度检测优化算法
2
作者 顾同成 徐武彬 +3 位作者 李冰 李志恒 惠翔禹 何心 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期239-252,共14页
针对装载机智能铲装过程中缺少对物料细粒度方面的高精度检测算法问题,提出基于YOLOv5改进的物料细粒度目标检测算法。该方法主要利用注意力机制提高模型对细粒度特征的提取能力和对低质量数据的检测能力。为进一步利用注意力优化网络性... 针对装载机智能铲装过程中缺少对物料细粒度方面的高精度检测算法问题,提出基于YOLOv5改进的物料细粒度目标检测算法。该方法主要利用注意力机制提高模型对细粒度特征的提取能力和对低质量数据的检测能力。为进一步利用注意力优化网络性能,提出双线性注意力机制,研究最佳嵌入方案并将软阈值思想与双线性注意力机制结合,以达到缓解低质量数据对模型检测精度影响的目的。实验结果表明,相较于原YOLOv5,双线性注意力机制改进后的网络在高质量样本上的mAP@0.5为93.2%,提高6.0%,每秒检测帧数(FPS)为52.6;嵌入软阈值后,网络在低质量样本上的mAP@0.5为90.2%,提高9.9%,FPS为50.0,满足装载机智能铲装过程对算法检测精度和实时性的要求。 展开更多
关键词 YOLOv5算法 智能铲装 物料识别 细粒度 注意力机制 目标检测
下载PDF
单目视觉下基于三维目标检测的车型识别方法综述 被引量:3
3
作者 王伟 唐心瑶 +1 位作者 宋焕生 张朝阳 《小型微型计算机系统》 CSCD 北大核心 2020年第6期1274-1280,共7页
近年来,车辆三维检测在无人驾驶及智能交通等领域得到了广泛的关注.但当前基于单目视觉的车辆三维检测车型识别方法并没有完善的总结,因此本文对该类方法进行了综述探讨.首先,将基于三维目标检测的车型识别问题分为粗粒度识别和细粒度... 近年来,车辆三维检测在无人驾驶及智能交通等领域得到了广泛的关注.但当前基于单目视觉的车辆三维检测车型识别方法并没有完善的总结,因此本文对该类方法进行了综述探讨.首先,将基于三维目标检测的车型识别问题分为粗粒度识别和细粒度识别两大类,接着根据不同的类别分别回顾了每类问题的发展历程,重点阐述了每类问题中代表性算法的核心思想及优缺点,然后介绍了两类问题中一些常用的公开数据集并且对它们的特点进行了对比,最后讨论了基于三维目标检测的车型识别目前还存在的一些问题和未来的发展前景. 展开更多
关键词 智能交通 车型识别 粗粒度识别 细粒度识别 三维目标检测 单目相机
下载PDF
一种基于改进R-CNN的细粒度船舶目标识别方法研究 被引量:2
4
作者 向东 饶从军 +1 位作者 欧阳泉 彭杨 《机电工程技术》 2021年第5期101-104,共4页
利用人工智能技术对遥感卫星图像中海域船舶目标识别具有非常重要的现实意义。针对卫星图像中复杂情况对船舶识别带来的干扰,以及小目标船舶高漏检率问题,基于改进R-CNN提出一种细粒度深度学习模型,引入负样本增强学习策略,构建了一种... 利用人工智能技术对遥感卫星图像中海域船舶目标识别具有非常重要的现实意义。针对卫星图像中复杂情况对船舶识别带来的干扰,以及小目标船舶高漏检率问题,基于改进R-CNN提出一种细粒度深度学习模型,引入负样本增强学习策略,构建了一种海上船舶识别与分类的深度学习网络。结合试验,与现有成熟的目标识别算法相比,此算法的精确度和召回率都有提高,并且模型具有良好的鲁棒性和适应性。 展开更多
关键词 人工智能 细粒度 深度学习 目标检测
下载PDF
多媒体内容理解的研究现状与展望 被引量:33
5
作者 彭宇新 綦金玮 黄鑫 《计算机研究与发展》 EI CSCD 北大核心 2019年第1期183-208,共26页
随着多媒体和网络技术的迅猛发展,海量的图像、视频、文本、音频等多媒体数据快速涌现.这些不同媒体的数据在形式上多源异构,语义上相互关联.认知科学研究表明,人脑生理组织结构决定了其对外界的感知和认知过程是跨越多种感官信息的融... 随着多媒体和网络技术的迅猛发展,海量的图像、视频、文本、音频等多媒体数据快速涌现.这些不同媒体的数据在形式上多源异构,语义上相互关联.认知科学研究表明,人脑生理组织结构决定了其对外界的感知和认知过程是跨越多种感官信息的融合处理.如何对不同媒体的数据进行语义分析和关联建模以实现多媒体内容理解,成为了一个研究和应用的关键问题,受到了学术界和工业界的广泛关注.选取了多媒体内容理解的5个最新热点研究方向:图像细分类与检索、视频分类与目标检测、跨媒体检索、视觉描述与生成、视觉问答,分别阐述了它们的基本概念、代表性方法、研究现状等,并进一步阐述了多媒体内容理解面临的重要挑战,同时给出未来的发展趋势,旨在帮助读者全面了解多媒体内容理解的研究现状,吸引更多研究人员投身相关研究并为他们提供技术参考,推动该领域的进一步发展. 展开更多
关键词 多媒体内容理解 图像细分类与检索 视频分类与目标检测 跨媒体检索 视觉描述与生成 视觉问答
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部