A numerical method was used to study the natural ventilation in a rectangular enclosure with two symmetrical openings. In order to improve the natural ventilation efficiency, a fin was introduced into the enclosure.St...A numerical method was used to study the natural ventilation in a rectangular enclosure with two symmetrical openings. In order to improve the natural ventilation efficiency, a fin was introduced into the enclosure.Steady-state heat transfer by laminar natural ventilation in a partially divided rectangular enclosure was investigated by numerically solving equations of mass, momentum and energy. Streamlines and isotherms were produced and heat transfer rate were calculated. A parametric study was carried out using the following parameters: Rayleigh number (1 × 103 - 1 × 106) , dimensionless length (0 - 0.7) and position values (-0. 7 - 0. 7). It is found that the Nusselt number is an increasing function of Rayleigh number. By comparing with no-fin case, it is concluded that fin can effectively enhance the natural ventilation in the enclosure.展开更多
基金Project(50408019) supported by the National Natural Science Foundation of China
文摘A numerical method was used to study the natural ventilation in a rectangular enclosure with two symmetrical openings. In order to improve the natural ventilation efficiency, a fin was introduced into the enclosure.Steady-state heat transfer by laminar natural ventilation in a partially divided rectangular enclosure was investigated by numerically solving equations of mass, momentum and energy. Streamlines and isotherms were produced and heat transfer rate were calculated. A parametric study was carried out using the following parameters: Rayleigh number (1 × 103 - 1 × 106) , dimensionless length (0 - 0.7) and position values (-0. 7 - 0. 7). It is found that the Nusselt number is an increasing function of Rayleigh number. By comparing with no-fin case, it is concluded that fin can effectively enhance the natural ventilation in the enclosure.