期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Efficient phase-induced gabor cube selection and weighted fusion for hyperspectral image classification 被引量:2
1
作者 CAI RunLin LIU ChenYing LI Jun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第4期778-792,共15页
Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great ... Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great potential for HSI feature extraction,was proposed.Although this new type of GF possibly better explores the frequency characteristics of HSIs,with a new parameter added,it generates a much larger amount of features,yielding redundancies and noises,and is therefore risky to severely deteriorate the efficiency and accuracy of classification.To tackle this problem,we fully exploit phase-induced Gabor features efficiently,proposing an efficient phase-induced Gabor cube selection and weighted fusion(EPCS-WF)method for HSI classification.Specifically,to eliminate the redundancies and noises,we first select the most representative Gabor cubes using a newly designed energy-based phase-induced Gabor cube selection(EPCS)algorithm before feeding them into classifiers.Then,a weighted fusion(WF)strategy is adopted to integrate the mutual information residing in different feature cubes to generate the final predictions.Our experimental results obtained on four well-known HSI datasets demonstrate that the EPCS-WF method,while only adopting four selected Gabor cubes for classification,delivers better performance as compared with other Gabor-based methods.The code of this work is available at https://github.com/cairlin5/EPCS-WF-hyperspectral-image-classification for the sake of reproducibility. 展开更多
关键词 hyperspectral image(HSI)classification Gabor filtering(gf) phase offset feature selection weighted fusion(WF)
原文传递
高动态范围红外图像压缩与细节增强算法
2
作者 刘永江 杨耿煌 +1 位作者 董建 刘易 《天津职业技术师范大学学报》 2021年第4期52-57,共6页
针对高动态范围内红外图像在进行压缩成像时存在细节丢失、噪声放大、梯度反转等问题,提出一种基于对比度限制直方图均衡(CLAHE)的动态范围红外图像压缩及细节增强算法。使用导向滤波将红外图像分为低空间频率层和高空间频率层;对低空... 针对高动态范围内红外图像在进行压缩成像时存在细节丢失、噪声放大、梯度反转等问题,提出一种基于对比度限制直方图均衡(CLAHE)的动态范围红外图像压缩及细节增强算法。使用导向滤波将红外图像分为低空间频率层和高空间频率层;对低空间频率层使用限制对比度直方图均衡算法进行图像压缩;对高空间频率层使用锐化滤波增强细节;处理后的低空间频率层和高空间频率层线性叠加得到细节增强图像。通过与平台直方图均衡化、小波变换图像增强、双边变换图像增强等图像增强算法对比,结果表明:本算法在红外图像动态范围压缩过程中可以有效突出图像细节,增强对比度,削弱噪点。 展开更多
关键词 高动态范围压缩 红外图像 对比度限制直方图均衡(CLAHE) 导向滤波(gf)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部