The combination of hydrolytic acidification and biological aerated filter (BAF) filled with mussel shells was used to treat domestic wastewater, and the removal rates of chemical oxygen demand (COD), ammonia nitro...The combination of hydrolytic acidification and biological aerated filter (BAF) filled with mussel shells was used to treat domestic wastewater, and the removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) by the system were analyzed under different TP concentrations. When TP concentration ranged from 12.39 to 14.69 mg/L, the removal rate of COD was the best, over 90.92% ; as TP concentration varied from 2.26 to 2.61 mg/L, the removal rates of NH3-N and TP were the best, up to 100.00% and 76.38% respectively. The results show that it is feasible to use mussel shells as the media of BAF, and TP concentration has certain influence on the performance of the system dealing with domestic wastewater.展开更多
基金Supported by the Natural Science Foundation of Zhejiang Province,China(LY14D060003)Science and Technology Plan Project of Zhoushan City(2014C41004+1 种基金2014C11006)Governmental Public Industrial Research Special Funds for Maine Projects(201305012-2)
文摘The combination of hydrolytic acidification and biological aerated filter (BAF) filled with mussel shells was used to treat domestic wastewater, and the removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) by the system were analyzed under different TP concentrations. When TP concentration ranged from 12.39 to 14.69 mg/L, the removal rate of COD was the best, over 90.92% ; as TP concentration varied from 2.26 to 2.61 mg/L, the removal rates of NH3-N and TP were the best, up to 100.00% and 76.38% respectively. The results show that it is feasible to use mussel shells as the media of BAF, and TP concentration has certain influence on the performance of the system dealing with domestic wastewater.