期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
Distributed Real-time State Estimation for Combined Heat and Power Systems 被引量:6
1
作者 Tingting Zhang Wen Zhang +3 位作者 Qi Zhao Yaxin Du Jian Chen Junbo Zhao 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期316-327,共12页
This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of hea... This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of heat systems.This heat system model is further used along with the power system steady-state model for holistic CHPS state estimation.A cubature Kalman filter(CKF)-based RTSE is developed to deal with the system nonlinearity while integrating both the historical and present measurement information.Finally,a multi-timescale asynchronous distributed computation scheme is designed to enhance the scalability of the proposed method for largescale systems.This distributed implementation requires only a small amount of information exchange and thus protects the privacy of different energy systems.Simulations carried out on two CHPSs show that the proposed method can significantly improve the estimation efficiency of CHPS without loss of accuracy compared with other existing models and methods. 展开更多
关键词 Combined heat and power system(CHPS) cubature Kalman filter(ckf) heat dynamics multi-time-scale asynchronous distributed scheme real-time state estimation(RTSE)
原文传递
Maneuvering target tracking algorithm based on cubature Kalman filter with observation iterated update 被引量:4
2
作者 胡振涛 Fu Chunling +1 位作者 Cao Zhiwei Li Congcong 《High Technology Letters》 EI CAS 2015年第1期39-45,共7页
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with it... Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm. 展开更多
关键词 maneuvering target tracking nonlinear filtering cubature Kalman filterckf interacting multiple model(IMM)
下载PDF
Fuzzy Adaptive Strong Tracking Cubature Kalman Filter
3
作者 徐晓苏 邹海军 +2 位作者 张涛 刘义亭 宫淑萍 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期731-736,共6页
To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is intro... To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is introduced and a fuzzy adaptive strong tracking cubature Kalman filter( FASTCKF) based on fuzzy logic controller is proposed. This method monitors residual absolute mean and standard deviation of each measurement component with fuzzy logic adaptive controller( FLAC),and adjusts the softening factor matrix dynamically by fuzzy rules,which is capable to modify suboptimal fading factor of STF adaptively and improve the filter's robust adaptive capacity. The simulation results show that the improved filtering performance is superior to the conventional square root cubature Kalman filter( SCKF) and the strong tracking square root cubature Kalman filter( STSCKF). 展开更多
关键词 cubature Kalman filter(ckf) strong tracking filter(STF) fuzzy logic adaptive controller(FLAC) softening factor matrix
下载PDF
Wind Estimation for UAV Based on Multi-sensor Information Fusion 被引量:1
4
作者 高艳辉 朱菲菲 +1 位作者 张勇 胡寿松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期42-47,共6页
Aiming at the requirements of accurate target positioning and autonomous capability for adapting to the environmental changes of unmanned aerial vehicle(UAV),a new method for wind estimation and airspeed calibration i... Aiming at the requirements of accurate target positioning and autonomous capability for adapting to the environmental changes of unmanned aerial vehicle(UAV),a new method for wind estimation and airspeed calibration is proposed.The method is implemented to obtain both wind speed and wind direction based on the information from a GPS receiver,an air data computer and a magnetic compass,combining with the velocity vector triangle relationships among ground speed,wind speed and air speed.Considering the installation error of Pitot tube,cubature Kalman filter(CKF)is applied to determine proportionality calibration coefficient of true airspeed,thus improving the accuracy of wind field information further.The entire autonomous flight simulation is performed in a constant 2-D wind using a digital simulation platform for UAV.Simulation results show that the wind speed and wind direction can be accurately estimated both in straight line and in turning segment during the path tracking by using the proposed method.The measurement accuracies of the wind speed and wind direction are 0.62 m/s and2.57°,respectively. 展开更多
关键词 wind estimation airspeed calibration unmanned aerial vehicle(UAV) cubature Kalman filter(ckf)
下载PDF
Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration 被引量:1
5
作者 Lujuan Dang Badong Chen +2 位作者 Yulong Huang Yonggang Zhang Haiquan Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第3期450-465,共16页
Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es... Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises. 展开更多
关键词 Cubature Kalman filter(ckf) inertial navigation system(INS)/global positioning system(GPS)integration minimum error entropy with fiducial points(MEEF) non-Gaussian noise
下载PDF
Periodic acoustic source tracking using propagation delayed measurements
6
作者 Huijuan HAO Zhansheng DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期390-399,共10页
There exist a large class of acoustic sources which have an underlying periodic phenomenon. Unlike the well-studied Bearings-Only Tracking(BOT) of an aperiodic acoustic source,this paper considers the problem of track... There exist a large class of acoustic sources which have an underlying periodic phenomenon. Unlike the well-studied Bearings-Only Tracking(BOT) of an aperiodic acoustic source,this paper considers the problem of tracking a periodic acoustic source. For periodic acoustic tracking, the signal emission time is known. However, the true measurement reception time is unknown because it is corrupted by noise due to propagation delay. We augment the sensor’s signal reception time onto bearing measurements, and the information of the delay constraint is included in the original bearing measurements to compensate for the propagation delay. A Cubature Kalman Filter(CKF) is used for periodic acoustic source tracking, in which measurement prediction cannot be obtained directly because the sensor’s position at the true measurement reception time is unknown.We solve this problem by using the implicit Gauss-Helmert Sensor Model(GHSM) for estimating the sensor’s position, which consists of the sensor’s motion equation and the known measured sensor’s signal reception time equation related to the state. Then a CKF based on the GHSM(CF-GHSM) is developed for periodic acoustic tracking. Illustrative examples demonstrate that the CF-GHSM algorithm is better than other algorithms for periodic acoustic source tracking. 展开更多
关键词 Periodic acoustic source Propagation delay Target Motion Analysis(TMA) Cubature Kalman filter(ckf) Gauss-Helmert model
原文传递
Adaptive cubature Kalman filter based on variational Bayesian inference under measurement uncertainty
7
作者 HU Zhentao JIA Haoqian GONG Delong 《High Technology Letters》 EI CAS 2022年第4期354-362,共9页
A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and rand... A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and random measurement losses.Firstly,the Inverse-Wishart(IW)distribution is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman filter framework.Secondly,the Bernoulli random variable is introduced as the judgement factor of the measurement losses,and the Beta distribution is selected as the conjugate prior distribution of measurement loss probability to ensure that the posterior distribution and prior distribution have the same function form.Finally,the joint posterior probability density function of the estimated variables is approximately decoupled by the variational Bayesian inference,and the fixed-point iteration approach is used to update the estimated variables.The simulation results show that the proposed VBACKF algorithm considers the comprehensive effects of system nonlinearity,time-varying measurement noise and unknown measurement loss probability,moreover,effectively improves the accuracy of target state estimation in complex scene. 展开更多
关键词 variational Bayesian inference cubature Kalman filter(ckf) measurement uncertainty Inverse-Wishart(IW)distribution
下载PDF
Cubature粒子滤波 被引量:35
8
作者 孙枫 唐李军 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2554-2557,共4页
非线性非高斯下后验概率密度函数解析值无法获得,需设计合理的重要性密度函数进行逼近。传统粒子滤波(particle filter,PF)直接采用未含最新量测信息的状态转移先验分布函数作为重要性密度函数来逼近后验概率密度函数。针对PF缺乏量测... 非线性非高斯下后验概率密度函数解析值无法获得,需设计合理的重要性密度函数进行逼近。传统粒子滤波(particle filter,PF)直接采用未含最新量测信息的状态转移先验分布函数作为重要性密度函数来逼近后验概率密度函数。针对PF缺乏量测信息的问题,提出一种基于Cubature卡尔曼滤波(Cubature Kalman filter,CKF)重采样的Cubature粒子滤波新算法(Cubature particle filter,CPF)。该算法在先验分布更新阶段融入了最新的观测数据,通过CKF设计重要性密度函数,使其更加接近系统状态后验概率密度。仿真表明CPF估计精度高于PF和扩展卡尔曼滤波(extended particle filter,EPF),与无轨迹粒子滤波(unscented particle filter,UPF)相比,其精度相当,但算法运行时间降低了约20%。 展开更多
关键词 非线性非高斯 重要性密度函数 Cubature卡尔曼滤波 Cubature粒子滤波
下载PDF
基于容积卡尔曼滤波的发电机动态状态估计 被引量:29
9
作者 陈亮 毕天姝 +3 位作者 李劲松 薛安成 李强 杨奇逊 《中国电机工程学报》 EI CSCD 北大核心 2014年第16期2706-2713,共8页
同步相量测量单元(phasor measurement unit,PMU)能够对动态过程中同步发电机功角进行直接量测,但随机误差`PMU存在量测误差,从而对应用造成不良后果。提出一种机电暂态过程中发电机动态状态估计新方法。基于发电机四阶动态方程建立了... 同步相量测量单元(phasor measurement unit,PMU)能够对动态过程中同步发电机功角进行直接量测,但随机误差`PMU存在量测误差,从而对应用造成不良后果。提出一种机电暂态过程中发电机动态状态估计新方法。基于发电机四阶动态方程建立了发电机动态状态估计模型;给出了过程噪声误差计算方法;由于动态状态估计模型为非线性,进而提出基于容积卡尔曼滤波(cubature Kalman filter,CKF)的动态状态估计方法,利用球面-径向规则生成Cubature点,通过发电机动态方程对Cubature点进行变换,得到发电机状态量预报值。仿真分析利用某实际大区域电网同时实现了基于CKF和无迹卡尔曼滤波(unscented Kalman filter,UKF)的动态状态估计。对这两种方法的估计性能指标进行对比分析,结果表明CKF法状态估计效果和计算效率均优于UKF法状态估计。 展开更多
关键词 机电暂态 容积卡尔曼滤波 发电机 相量测量单元 动态状态估计
下载PDF
基于容积卡尔曼滤波的卫星姿态估计 被引量:28
10
作者 魏喜庆 宋申民 《宇航学报》 EI CAS CSCD 北大核心 2013年第2期193-200,共8页
为了获得更好的估计精度和滤波稳定性,提出了一种基于容积卡尔曼滤波(Cubature Kalman Filter,CKF)的容积四元数估计器(Cubature Quaternion Estimator,CQE)估计卫星姿态。新方法利用四元数进行姿态更新,同时采用广义罗德里格参数表示... 为了获得更好的估计精度和滤波稳定性,提出了一种基于容积卡尔曼滤波(Cubature Kalman Filter,CKF)的容积四元数估计器(Cubature Quaternion Estimator,CQE)估计卫星姿态。新方法利用四元数进行姿态更新,同时采用广义罗德里格参数表示误差角,有效地避免了滤波过程中的奇异。为克服多传感器融合时运算效率低的问题,通过容积四元数估计器与信息滤波相结合,提出了一种容积信息四元数估计器(Cubature Information Quaternion Estimator,CIQE)。仿真表明角度和陀螺漂移初始估计误差较大时,新方法仍能取得良好的估计性能。 展开更多
关键词 姿态估计 容积卡尔曼滤波 容积四元数估计器 容积信息四元数估计器
下载PDF
基于抗差自适应容积卡尔曼滤波的超紧耦合跟踪方法 被引量:21
11
作者 赵欣 王仕成 +2 位作者 廖守亿 马龙 刘志国 《自动化学报》 EI CSCD 北大核心 2014年第11期2530-2540,共11页
为降低基于单一调节回路的超紧耦合结构存在的反作用影响,设计了一种基于双回路的超紧耦合结构.基于此,为解决所设计结构中跟踪环路的非线性滤波问题,针对测量异常误差和动力学模型误差,提出了一种基于抗差自适应容积卡尔曼滤波(Robust ... 为降低基于单一调节回路的超紧耦合结构存在的反作用影响,设计了一种基于双回路的超紧耦合结构.基于此,为解决所设计结构中跟踪环路的非线性滤波问题,针对测量异常误差和动力学模型误差,提出了一种基于抗差自适应容积卡尔曼滤波(Robust adaptive cubature Kalman filter,RACKF)的超紧耦合跟踪算法.该算法采用稳健M估计调整容积卡尔曼滤波(Cubature Kalman filter,CKF)算法,对观测量中粗差的影响"程度"进行探测和处理,以减小观测量异常误差产生的影响,同时利用自适应调节因子对算法进行调节修正,以处理动态扰动误差引入的影响.实验结果表明:所提出的方法能有效地处理模型不准确所引入的误差,较好地实现全球定位系统(Global positioning system,GPS)卫星信号的高精度和稳定跟踪,其跟踪性能远优于基于单一回路的跟踪方法,同时优于基于无迹卡尔曼滤波(Unscented Kalman filter,UKF)和基于CKF的跟踪方法,提升了导航系统在高动态条件下的适应性能. 展开更多
关键词 超紧耦合导航 容积卡尔曼滤波 抗差自适应 高动态 信号跟踪
下载PDF
基于迭代容积粒子滤波的蒙特卡洛定位算法 被引量:19
12
作者 刘颖 苏俊峰 朱明强 《信息与控制》 CSCD 北大核心 2013年第5期632-638,共7页
利用容积卡尔曼滤波来设计粒子滤波器的重要性密度函数,并将当前的测量信息迭代到贯序重要性采样(SIS)过程中,进而提出一种基于迭代容积粒子滤波的RSSI(received signal strength indicator)蒙特卡罗定位算法.该算法使用迭代容积粒子滤... 利用容积卡尔曼滤波来设计粒子滤波器的重要性密度函数,并将当前的测量信息迭代到贯序重要性采样(SIS)过程中,进而提出一种基于迭代容积粒子滤波的RSSI(received signal strength indicator)蒙特卡罗定位算法.该算法使用迭代容积粒子滤波对目标位置和无线信道衰减参数同时进行估计,采用迭代的方式对测量方程进行更新,进一步提高无线信道衰减参数的估计精度.仿真结果表明,基于迭代容积粒子滤波的RSSI蒙特卡罗定位算法对比基于无味粒子滤波的RSSI定位算法,能够有效降低室内无线定位的误差. 展开更多
关键词 室内定位 接收信号强度指示(RSSI) 蒙特卡罗定位(MCL) 容积卡尔曼滤波(ckf)
原文传递
基于容积卡尔曼滤波的异质多传感器融合算法 被引量:14
13
作者 胡振涛 曹志伟 +1 位作者 李松 李枞枞 《光电子.激光》 EI CAS CSCD 北大核心 2014年第4期697-703,共7页
针对机动目标跟踪系统建模中的非线性问题,提出一种基于容积卡尔曼滤波(CKF)的雷达与红外传感器融合算法。考虑到被估计系统对目标跟踪算法实时性与精度的要求,在容积滤波框架下构建了集中式量测融合(CMF)和分布式状态融合(DSF)两种结... 针对机动目标跟踪系统建模中的非线性问题,提出一种基于容积卡尔曼滤波(CKF)的雷达与红外传感器融合算法。考虑到被估计系统对目标跟踪算法实时性与精度的要求,在容积滤波框架下构建了集中式量测融合(CMF)和分布式状态融合(DSF)两种结构形式。CMF结构采用最优加权方法,首先对雷达和红外两种异类传感器的方位角度量测信息进行融合,并将其与融合后的雷达径向距量测构建新的量测数据,进而通过CKF算法对机动目标进行跟踪。DSF结构则首先对雷达量测中径向距信息进行加权融合,并将融合结果作为红外传感器的虚拟径向距量测,以实现红外量测的扩维处理,进而对每组量测数据应用CKF进行分布式并行加权融合,获得目标运动状态的最终估计。仿真场景中,对两种融合方法的性能进行比较,理论分析与仿真实验验证了算法的可行性与有效性。 展开更多
关键词 目标跟踪 异质多传感器融合 非线性滤波 容积卡尔曼滤波(ckf)
原文传递
基于Sage-Husa算法的自适应平方根CKF目标跟踪方法 被引量:16
14
作者 李宁 祝瑞辉 张勇刚 《系统工程与电子技术》 EI CSCD 北大核心 2014年第10期1899-1905,共7页
在目标跟踪中,噪声的统计特性未知可能会引起滤波精度下降甚至发散,针对该问题,提出了一种新的自适应平方根容积卡尔曼滤波算法。所提方法在常规Sage-Husa算法的基础上采用容积规则,推导出了一种适用于非线性系统的自适应噪声统计估计... 在目标跟踪中,噪声的统计特性未知可能会引起滤波精度下降甚至发散,针对该问题,提出了一种新的自适应平方根容积卡尔曼滤波算法。所提方法在常规Sage-Husa算法的基础上采用容积规则,推导出了一种适用于非线性系统的自适应噪声统计估计器。仿真结果显示,相对于标准的平方根容积卡尔曼,所提方法在噪声统计特性未知或时变的情况下滤波精度有显著提高。 展开更多
关键词 目标跟踪 非线性 Sage-Husa算法 自适应 平方根容积卡尔曼
下载PDF
低复杂度自适应容积卡尔曼滤波算法 被引量:9
15
作者 李春辉 马健 +1 位作者 杨永建 甘轶 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第4期716-724,共9页
确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适... 确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适应CKF算法,通过设立基于新息的自适应修正判决准则和修正方式,直接对状态预测值进行修正,使滤波算法能及时跟上目标真实状态,以提高滤波精度。使用浮点操作数计算并分析了CKF算法、强跟踪CKF算法及所提算法的复杂度,同时将3种算法应用在建模不准确的目标跟踪中,并进行仿真验证。仿真结果表明:在目标建模不匹配的情况下,低复杂度自适应CKF算法和强跟踪CKF算法都能保持较好的滤波精度和数值稳定性,同时所提算法在算法复杂度上有明显改善。 展开更多
关键词 容积卡尔曼滤波(ckf) 目标模型不确定性 强跟踪滤波器 自适应修正 算法复杂度
下载PDF
基于改进型CKF的SINS初始对准方法 被引量:9
16
作者 徐晓苏 田泽鑫 +1 位作者 刘义亭 邹海军 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期81-86,共6页
针对在晃动基座和大失准角下水下自主航行器(AUV)采用传统对准方法对准精度下降问题,建立捷联惯导系统(SINS)非线性对准模型,采用改进型CKF(ICKF)方法进行滤波,通过采用球面最简相径(SSR)规则选取CKF的容积点,在CKF的时间和量测更新方... 针对在晃动基座和大失准角下水下自主航行器(AUV)采用传统对准方法对准精度下降问题,建立捷联惯导系统(SINS)非线性对准模型,采用改进型CKF(ICKF)方法进行滤波,通过采用球面最简相径(SSR)规则选取CKF的容积点,在CKF的时间和量测更新方程之中引入强跟踪滤波(STF)的渐消因子;在CKF的基础上引入高斯-牛顿迭代算法,提高晃动基座下大失准角SIN对准精度.仿真实验表明:该方法对准精度高、鲁棒性强,克服了模型不准确时滤波精度下降甚至发散的问题,更能满足初始对准的要求. 展开更多
关键词 初始对准 强跟踪滤波器 非线性系统 球面最简相经(SSR)规则 容积卡尔曼滤波(ckf)
原文传递
基于加权自适应平方根容积卡尔曼滤波的GPS/INS组合导航方法 被引量:11
17
作者 岳哲 廉保旺 唐成凯 《电子与信息学报》 EI CSCD 北大核心 2018年第3期565-572,共8页
针对GPS/INS组合导航系统中,由于量测噪声统计的不确定性导致平方根容积卡尔曼滤波器(SCKF)滤波精度下降甚至发散的问题,该文提出一种基于加权的自适应SCKF(WASCKF)方法。该方法首先利用移动开窗理论对SCKF新息的协方差阵进行最大似然估... 针对GPS/INS组合导航系统中,由于量测噪声统计的不确定性导致平方根容积卡尔曼滤波器(SCKF)滤波精度下降甚至发散的问题,该文提出一种基于加权的自适应SCKF(WASCKF)方法。该方法首先利用移动开窗理论对SCKF新息的协方差阵进行最大似然估计,实现对测量噪声统计特性的在线调整;然后,利用加权理论,依据窗口内不同时刻信息的有用程度的不同而设置相应的权值,增强对窗口内有用信息的利用。最后,将WASCKF方法应用于GPS/INS组合导航系统中进行仿真验证,并与SCKF和ASCKF方法进行比较,结果表明,在测量噪声统计存在不确定情况下,该文所提出方法的速度误差和位置误差的均方根均小于SCKF和ASCKF方法,能够有效地提高GPS/INS组合导航系统对量测噪声统计不确定的自适应能力与导航性能。 展开更多
关键词 组合导航 量测噪声 容积卡尔曼滤波 加权
下载PDF
基于SVD的多终端实时定轨自适应鲁棒CKF算法 被引量:10
18
作者 李兆铭 杨文革 +1 位作者 丁丹 王超 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第3期490-496,共7页
针对多终端实时定轨过程中难以精确获得量测噪声统计特性及存在异常测速值导致滤波精度降低的问题,提出一种基于奇异值分解(SVD)的自适应鲁棒容积卡尔曼滤波(CKF)算法。使用欧拉预测校正法离散带J2项摄动的轨道动力学方程以得到状态方... 针对多终端实时定轨过程中难以精确获得量测噪声统计特性及存在异常测速值导致滤波精度降低的问题,提出一种基于奇异值分解(SVD)的自适应鲁棒容积卡尔曼滤波(CKF)算法。使用欧拉预测校正法离散带J2项摄动的轨道动力学方程以得到状态方程。将H∞鲁棒滤波思想应用于CKF算法,建立了非线性条件下约束水平与滤波信息的反比关系,实现对约束水平的自适应调整,并使用SVD代替传统的Cholesky分解以提高数值计算的稳定性。仿真结果表明,欧拉预测校正法可以有效提高轨道动力学方程离散精度;相比标准CKF算法,自适应鲁棒CKF算法具有更高的定轨精度及鲁棒性。 展开更多
关键词 手持终端 实时定轨 奇异值分解 容积卡尔曼滤波 鲁棒滤波
下载PDF
基于自适应容积卡尔曼滤波方法的涡扇发动机气路部件故障诊断 被引量:11
19
作者 胡宇 张世英 +2 位作者 罗雷 朱杰堂 马鸿飞 《航空动力学报》 EI CAS CSCD 北大核心 2016年第5期1260-1267,共8页
针对涡扇发动机气路部件故障诊断中参数存在不同的噪声统计特性,提出了一种自适应平方根容积卡尔曼滤波(ASRCKF)器的自适应滤波方法.该方法直接利用基于3阶容积积分方法近似发动机的非线性统计特性,用于替代非线性无迹卡尔曼滤波方法... 针对涡扇发动机气路部件故障诊断中参数存在不同的噪声统计特性,提出了一种自适应平方根容积卡尔曼滤波(ASRCKF)器的自适应滤波方法.该方法直接利用基于3阶容积积分方法近似发动机的非线性统计特性,用于替代非线性无迹卡尔曼滤波方法的系统模型,避免了滤波过程参数选取的问题;采用移动窗口法对噪声协方差矩阵进行自适应估计,提高了算法对不同统计特性噪声的自适应能力和滤波精度.通过对发动机气路部件健康参数蜕化过程仿真结果表明:ASRCKF方法相比平方根容积卡尔曼滤波(SRCKF)方法,精度提高40%~50%,对不同噪声信号具有更好的适应能力. 展开更多
关键词 涡扇发动机 容积卡尔曼滤波 移动窗口法 参数估计 故障诊断
原文传递
Modeling and state of charge estimation of lithium-ion battery 被引量:7
20
作者 Xi-Kun Chen Dong Sun 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第3期202-211,共10页
Modeling and state of charge (SOC) estimation of lithium-ion (Li-ion) battery are the key techniques of battery pack management system (BMS) and critical to its reliability and safety operation. An auto-regressi... Modeling and state of charge (SOC) estimation of lithium-ion (Li-ion) battery are the key techniques of battery pack management system (BMS) and critical to its reliability and safety operation. An auto-regressive with exogenous input (ARX) model is derived from RC equivalent circuit model (ECM) due to the discrete-time characteristics of BMS. For the time-varying environmental factors and the actual battery operating conditions, a variable forgetting factor recursive least square (VFFRLS) algorithm is adopted as an adaptive parameter identifica- tion method. Based on the designed model, an SOC estimator using cubature Kalman filter (CKF) algorithm is then employed to improve estimation performance and guarantee numerical stability in the computational procedure. In the battery tests, experimental results show that CKF SOC estimator has a more accuracy estimation than extended Kalman filter (EKF) algorithm, which is widely used for Li-ion battery SOC estimation, and the maximum estimation error is about 2.3%. 展开更多
关键词 Lithium-ion (Li-ion) battery Variable forgetting factor recursive least square (VFFRLS) Cubature Kalman filter ckf Extended Kalman filter (EKF)
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部