Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an...Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an integral squeeze film damper(ISFD). Using a first grade spur gear in engineering for reference, an open first-grade spur gear system is built and the vibration characteristics of the gear system with rigid supports and ISFD elastic damping supports are studied under different degrees of misalignment. The experimental results show that ISFD supports have excellent damping and vibration attenuation characteristics, which have improved control of the gear system vibration in horizontal, vertical and axial directions under different degrees of misalignment. This work shows that an ISFD structure can effectively suppress vibration of characteristic frequency components and resonance modulation frequency components. The test results provide evidence for the application of ISFD in vibration control of gear shaft misalignment faults in engineering.展开更多
Ultrasonic vibration-assisted ELID(UVA-ELID)grinding is utilized as a novel and highly efficient processing method for hard and brittle materials such as ceramics.In this study,the UVA-ELID grinding ZTA ceramics is em...Ultrasonic vibration-assisted ELID(UVA-ELID)grinding is utilized as a novel and highly efficient processing method for hard and brittle materials such as ceramics.In this study,the UVA-ELID grinding ZTA ceramics is employed to investigate the influence of thermomechanical loading on the characteristics of oxide film.Based on the fracture mechanics of material,the model of internal stress for oxide film damage is proposed.The thermomechanical loading is composed of mechanical force and the thermal stress generating from grinding temperature.The theoretical model is established for the mechanical force,thermal stress and internal stress respectively.Then the finite element analysis method is used to simulate the theoretical model.The mechanical force and grinding temperature is measured during the actual grinding test.During the grinding process,the effect of grinding wheel speed and grinding depth on the thermomechanical force and the characteristics of oxide film is analyzed.Compared with the conventional ELID(CELID)grinding,the mechanical force decreased by 25.6%and 22.4%with the increase of grinding wheel speed and grinding depth respectively,and the grinding temperature declined by 10.7%and12.8%during the UVA-ELID grinding.The thermal stress in the latter decreased by 16.3%and20.8%respectively,and internal stress reduced by 12.3%and 15.6%.It was experimentally found that the topographies of oxide layer on the surface of the wheel and the machined surface in the latter was better than that in the former.The results indicate that the action of ultrasonic vibration establish a significant effect on the processing.Subsequently,it should be well considered for future reference when processing the ZTA ceramics.展开更多
The effect of ultrasonic vibration on the dechromisation corrosion of a CuCr alloy in HC1 solution was studied and the corrosion mechanisms were analyzed. It is found that ultlasonic vibration reduces the dechromisati...The effect of ultrasonic vibration on the dechromisation corrosion of a CuCr alloy in HC1 solution was studied and the corrosion mechanisms were analyzed. It is found that ultlasonic vibration reduces the dechromisation incubation time, accelerates the dechromisafion corrosion rate, decreases the temperature and concentration of HC1 solution, and when the dechromisation occurs it seriously weakens the microstmcture of dechromisation layer. It is concluded that ultrasonic vibration can accelerate destruction of the passivation film on the Cr surface and increase the activities of Cl^- and Cr.展开更多
The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The ...The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The frequency spectrum quantitative prediction(FSQP)method is used to solve the frequency spectra for predicting the coupling strength among the eigen-modes in AlN and ZnO FBARs.The results elaborate that the flip of the TE and TSh2 branches results in novel self-coupling vibration between the small-wavenumber TE and large-wavenumber TE modes,which has never been observed in the ZnO FBAR.Besides,the mode flip leads to the change in the relative positions of the frequency spectral curves about the TE cut-off frequency.The obtained frequency spectra can be used to predict the mode-coupling behaviors of the vibration modes in the AlN FBAR.The conclusions drawn from the results can help to distinguish the desirable operation modes of the AlN FBAR with very weak coupling strength from all vibration modes.展开更多
Underwater exploration has been an attractive topic for understanding the very nature of the lakes and even deep oceans.In recent years,extensive efforts have been devoted to developing functional materials and their ...Underwater exploration has been an attractive topic for understanding the very nature of the lakes and even deep oceans.In recent years,extensive efforts have been devoted to developing functional materials and their integrated devices for underwater information capturing.However,there still remains a great challenge for water depth detection and vibration monitoring in a high-efficient,controllable,and scalable way.Inspired by the lateral line of fish that can sensitively sense the water depth and environmental stimuli,an ultrathin,elastic,and adaptive underwater sensor based on Ecoflex matrix with embedded assembled graphene sheets is fabricated.The graphene structured thin film is endowed with favourable adaptive and morphable features,which can conformally adhere to the structural surface and transform to a bulged state driven by water pressure.Owing to the introduction of the graphene-based layer,the integrated sensing system can actively detect the water depth with a wide range of 0.3-1.8 m.Furthermore,similar to the fish,the mechanical stimuli from land(e.g.knocking,stomping)and water(e.g.wind blowing,raining,fishing)can also be sensitively captured in real time.This graphene structured thin-film system is expected to demonstrate significant potentials in underwater monitoring,communication,and risk avoidance.展开更多
本文以具有变参数挤压油膜阻尼器(Variable Parameter Squeeze Film Damper,缩写为VPSFD)鼠笼式弹性支承的单盘转子为试验模型,研究了VPSFD参数变化对振动共振幅值的抑制作用.在稳态试验的基础上,对转子过前两阶临界转速的振动抑制进行...本文以具有变参数挤压油膜阻尼器(Variable Parameter Squeeze Film Damper,缩写为VPSFD)鼠笼式弹性支承的单盘转子为试验模型,研究了VPSFD参数变化对振动共振幅值的抑制作用.在稳态试验的基础上,对转子过前两阶临界转速的振动抑制进行了研究,并实施开环瞬态振动控制.研究结果表明,适时调节VPSFD的参数,可使转子系统前两阶共振幅值大为降低,使转子能平稳通过前两阶临界转速.展开更多
Rolling bearing and Squeeze Film Damper(SFD)are used in rotor support structures,and most researches on the nonlinear rotor-bearing system are focused on the simple rotor-bearing systems.This work emphasizes the compa...Rolling bearing and Squeeze Film Damper(SFD)are used in rotor support structures,and most researches on the nonlinear rotor-bearing system are focused on the simple rotor-bearing systems.This work emphasizes the comparative analysis of the influence of SFD on the nonlinear dynamic behavior of the dual-rotor system supported by rolling bearings.Firstly,a reduced dynamic model is established by combining the Finite Element(FE)method and the freeinterface method of component mode synthesis.The proposed model is verified by comparing the natural characteristics obtained from an FE model with those from the experiment.Then,the steady-state vibration responses of the system with or without SFD are solved by the numerical integration method.The influences of the ball bearing clearance,unbalance,centralizing spring stiffness and oil film clearance of SFD on the nonlinear steady-state vibration responses of the dual-rotor system are analyzed.Results show that SFD can effectively suppress the amplitude jump of the dual rotor system sustaining two rotors unbalance excitations.As the ball bearing clearance or unbalance increases,the amplitude jump phenomenon becomes more obvious,the resonance hysteresis phenomenon strengthens or weakens,the resonant peaks shift to the left or the right,respectively.SFD with unreasonable parameters will aggravate the system vibration,the smaller the oil film clearance,the better the damping performance of the SFD,the larger the centralizing spring stiffness is,the larger resonance amplitudes are.展开更多
Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ...Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.展开更多
基金Supported by the National Basic Research Program of China(No.2012CB026000)2015 Beijing Scientific Research and Graduate Training Project(No.0318-21510028008)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)
文摘Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an integral squeeze film damper(ISFD). Using a first grade spur gear in engineering for reference, an open first-grade spur gear system is built and the vibration characteristics of the gear system with rigid supports and ISFD elastic damping supports are studied under different degrees of misalignment. The experimental results show that ISFD supports have excellent damping and vibration attenuation characteristics, which have improved control of the gear system vibration in horizontal, vertical and axial directions under different degrees of misalignment. This work shows that an ISFD structure can effectively suppress vibration of characteristic frequency components and resonance modulation frequency components. The test results provide evidence for the application of ISFD in vibration control of gear shaft misalignment faults in engineering.
基金the National Natural Science Foundation of China(No.51805284)the Key Scientific Research Projects of Colleges and Universities in Henan Province of China(No.19A460006)PhD Research Startup Fund Project of Pingdingshan University of China(No.PXY-BSQD-2018013)。
文摘Ultrasonic vibration-assisted ELID(UVA-ELID)grinding is utilized as a novel and highly efficient processing method for hard and brittle materials such as ceramics.In this study,the UVA-ELID grinding ZTA ceramics is employed to investigate the influence of thermomechanical loading on the characteristics of oxide film.Based on the fracture mechanics of material,the model of internal stress for oxide film damage is proposed.The thermomechanical loading is composed of mechanical force and the thermal stress generating from grinding temperature.The theoretical model is established for the mechanical force,thermal stress and internal stress respectively.Then the finite element analysis method is used to simulate the theoretical model.The mechanical force and grinding temperature is measured during the actual grinding test.During the grinding process,the effect of grinding wheel speed and grinding depth on the thermomechanical force and the characteristics of oxide film is analyzed.Compared with the conventional ELID(CELID)grinding,the mechanical force decreased by 25.6%and 22.4%with the increase of grinding wheel speed and grinding depth respectively,and the grinding temperature declined by 10.7%and12.8%during the UVA-ELID grinding.The thermal stress in the latter decreased by 16.3%and20.8%respectively,and internal stress reduced by 12.3%and 15.6%.It was experimentally found that the topographies of oxide layer on the surface of the wheel and the machined surface in the latter was better than that in the former.The results indicate that the action of ultrasonic vibration establish a significant effect on the processing.Subsequently,it should be well considered for future reference when processing the ZTA ceramics.
基金financially supported by the Scientific Research Fund of Heilongjiang Provincial Education Department, China (No. 11511020)
文摘The effect of ultrasonic vibration on the dechromisation corrosion of a CuCr alloy in HC1 solution was studied and the corrosion mechanisms were analyzed. It is found that ultlasonic vibration reduces the dechromisation incubation time, accelerates the dechromisafion corrosion rate, decreases the temperature and concentration of HC1 solution, and when the dechromisation occurs it seriously weakens the microstmcture of dechromisation layer. It is concluded that ultrasonic vibration can accelerate destruction of the passivation film on the Cr surface and increase the activities of Cl^- and Cr.
基金Project supported by the National Natural Science Foundation of China(Nos.11872329,12192211,and 12072315)the Natural Science Foundation of Zhejiang Province of China(No.LD21A020001)+1 种基金the National Postdoctoral Program for Innovation Talents of China(No.BX2021261)the China Postdoctoral Science Foundation Funded Project(No.2022M722745)。
文摘The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The frequency spectrum quantitative prediction(FSQP)method is used to solve the frequency spectra for predicting the coupling strength among the eigen-modes in AlN and ZnO FBARs.The results elaborate that the flip of the TE and TSh2 branches results in novel self-coupling vibration between the small-wavenumber TE and large-wavenumber TE modes,which has never been observed in the ZnO FBAR.Besides,the mode flip leads to the change in the relative positions of the frequency spectral curves about the TE cut-off frequency.The obtained frequency spectra can be used to predict the mode-coupling behaviors of the vibration modes in the AlN FBAR.The conclusions drawn from the results can help to distinguish the desirable operation modes of the AlN FBAR with very weak coupling strength from all vibration modes.
基金supported by the Natural Science Foundation of China(51803226,52073295)the Sino-German Mobility Program(M-0424)+3 种基金Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDB-SSWSLH036)Bureau of International Cooperation,Chinese Academy of Sciences(174433KYSB20170061)Ningbo Science and Technology Bureau(2021Z127)K.C.Wong Education Foundation(GJTD-2019-13).
文摘Underwater exploration has been an attractive topic for understanding the very nature of the lakes and even deep oceans.In recent years,extensive efforts have been devoted to developing functional materials and their integrated devices for underwater information capturing.However,there still remains a great challenge for water depth detection and vibration monitoring in a high-efficient,controllable,and scalable way.Inspired by the lateral line of fish that can sensitively sense the water depth and environmental stimuli,an ultrathin,elastic,and adaptive underwater sensor based on Ecoflex matrix with embedded assembled graphene sheets is fabricated.The graphene structured thin film is endowed with favourable adaptive and morphable features,which can conformally adhere to the structural surface and transform to a bulged state driven by water pressure.Owing to the introduction of the graphene-based layer,the integrated sensing system can actively detect the water depth with a wide range of 0.3-1.8 m.Furthermore,similar to the fish,the mechanical stimuli from land(e.g.knocking,stomping)and water(e.g.wind blowing,raining,fishing)can also be sensitively captured in real time.This graphene structured thin-film system is expected to demonstrate significant potentials in underwater monitoring,communication,and risk avoidance.
文摘本文以具有变参数挤压油膜阻尼器(Variable Parameter Squeeze Film Damper,缩写为VPSFD)鼠笼式弹性支承的单盘转子为试验模型,研究了VPSFD参数变化对振动共振幅值的抑制作用.在稳态试验的基础上,对转子过前两阶临界转速的振动抑制进行了研究,并实施开环瞬态振动控制.研究结果表明,适时调节VPSFD的参数,可使转子系统前两阶共振幅值大为降低,使转子能平稳通过前两阶临界转速.
基金supported by the National Natural Science Foundation of China(Nos.11772089,11972112)the Fundamental Research Funds for the Central Universities,China(Nos.N170308028,N2003014 and N180708009)LiaoNing Revitalization Talents Program,China(Nos.XLYC1807008)。
文摘Rolling bearing and Squeeze Film Damper(SFD)are used in rotor support structures,and most researches on the nonlinear rotor-bearing system are focused on the simple rotor-bearing systems.This work emphasizes the comparative analysis of the influence of SFD on the nonlinear dynamic behavior of the dual-rotor system supported by rolling bearings.Firstly,a reduced dynamic model is established by combining the Finite Element(FE)method and the freeinterface method of component mode synthesis.The proposed model is verified by comparing the natural characteristics obtained from an FE model with those from the experiment.Then,the steady-state vibration responses of the system with or without SFD are solved by the numerical integration method.The influences of the ball bearing clearance,unbalance,centralizing spring stiffness and oil film clearance of SFD on the nonlinear steady-state vibration responses of the dual-rotor system are analyzed.Results show that SFD can effectively suppress the amplitude jump of the dual rotor system sustaining two rotors unbalance excitations.As the ball bearing clearance or unbalance increases,the amplitude jump phenomenon becomes more obvious,the resonance hysteresis phenomenon strengthens or weakens,the resonant peaks shift to the left or the right,respectively.SFD with unreasonable parameters will aggravate the system vibration,the smaller the oil film clearance,the better the damping performance of the SFD,the larger the centralizing spring stiffness is,the larger resonance amplitudes are.
基金the National Basic Research Program of China(No.2012CB026000)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)National Science and Technology Major Project(No.2017-IV-0010-0047).
文摘Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.