Due to its lead-free composition and a unique double polarization hysteresis loop with a large maximum polarization(Pmax)and a small remnant polarization(Pr),AgNbO_(3)-based antiferroelectrics(AFEs)have attracted exte...Due to its lead-free composition and a unique double polarization hysteresis loop with a large maximum polarization(Pmax)and a small remnant polarization(Pr),AgNbO_(3)-based antiferroelectrics(AFEs)have attracted extensive research interest for electric energy storage applications.However,a low dielectric breakdown field(Eb)limits an energy density and its further development.In this work,a highly efficient method was proposed to fabricate high-energy-density Ag(Nb,Ta)O_(3) capacitor films on Si substrates,using a two-step process combining radio frequency(RF)-magnetron sputtering at 450℃and post-deposition rapid thermal annealing(RTA).The RTA process at 700℃led to sufficient crystallization of nanograins in the film,hindering their lateral growth by employing short annealing time of 5 min.The obtained Ag(Nb,Ta)O_(3) films showed an average grain size(D)of~14 nm(obtained by Debye-Scherrer formula)and a slender room temperature(RT)polarization-electric field(P-E)loop(Pr≈3.8 mC·cm^(−2) and P_(max)≈38 mC·cm^(−2) under an electric field of~3.3 MV·cm^(−1)),the P-E loop corresponding to a high recoverable energy density(W_(rec))of~46.4 J·cm^(−3) and an energy efficiency(η)of~80.3%.Additionally,by analyzing temperature-dependent dielectric property of the film,a significant downshift of the diffused phase transition temperature(T_(M2-M3))was revealed,which indicated the existence of a stable relaxor-like AFE phase near the RT.The downshift of the T_(M2-M3) could be attributed to a nanograin size and residual tensile strain of the film,and it led to excellent temperature stability(20-240℃)of the energy storage performance of the film.Our results indicate that the Ag(Nb,Ta)O_(3) film is a promising candidate for electrical energy storage applications.展开更多
DC-link capacitors play a vital role in managing ripple voltage and current in converters and various devices.This study focuses on exploring the aging characteristics of DC-link capacitors in alternating humid and th...DC-link capacitors play a vital role in managing ripple voltage and current in converters and various devices.This study focuses on exploring the aging characteristics of DC-link capacitors in alternating humid and thermal environments aligned with the operational conditions in photovoltaic and wind power applications.Adhering to relevant power equipment standards,we designed a 24-h alternating humid and thermal aging environment tailored to the requirements of DC-link capacitors.An aging test platform is established,and 20 widely used metallized polypropylene film capacitors are selected for evaluation.Parameters such as the capacitance,equivalent series resistance(ESR),and phase angle are assessed during aging,as well as the onset time and extent of aging at various intervals.This study focuses on the aging mechanisms,analyzing electrode corrosion,the self-healing process,and dielectric aging.Fitting the aging characteristics enabled us to calculate the lifespan of the capacitor and predict it under different degrees of capacitance decay.The results show that under alternating humid and thermal conditions,capacitance attenuation and ESR increase exhibit exponential nonlinearity,influenced by factors such as the oxidation and self-healing of capacitive metal electrodes,dielectric main-chain fracture,and crystal transformation.This study underscores the pivotal role of encapsulation in determining the aging decay time.展开更多
Smart construction of battery-type anodes with high rate and good mechanical properties is significant for advanced sodium ion capacitors(SICs).Herein,a flexible film consisting of MoO_(2) subnanoclusters encapsulated...Smart construction of battery-type anodes with high rate and good mechanical properties is significant for advanced sodium ion capacitors(SICs).Herein,a flexible film consisting of MoO_(2) subnanoclusters encapsulated in nitrogen-doped carbon nanofibers(MoO_(2) SCs@N-CNFs)is designed and synthesized via electrospinning toward SICs as anodes.The strong N-Mo interaction guarantees the stable yet uniform dispersion of high loading MoO_(2) SCs(≈40 wt.%)in the flexible carbonaceous substrate.The sub-nanoscale effect of SCs restrains electrode pulverization and improves the Na+diffusion kinetics,rendering better pseudocapacitance-dominated Na+-storage properties than the nanocrystal counterpart.The MoO_(2) SCs@N-CNFs paper with mass loadings of 2.2–10.1 mg cm^(−2) can be directly used as free-standing anode for SICs,which exhibit high reversible gravimetric/areal capacities both in liquid and quasi-solid-state electrolytes.The assembled flexible SICs competitively exhibit exceptional energy density and cycling stability.More significantly,the sub-nanoscale engineering strategy here is promisingly generalized to future electrode design for other electrochemical energy-related applications and beyond.展开更多
The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were perform...The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.展开更多
基金support from the National Natural Science Foundation of China (Grant Nos.51772175,52072218,and 52002192)Natural Science Foundation of Shandong Province (Grant Nos.ZR2020QE042,ZR2022ZD39,and ZR2022ME031)+6 种基金the Science,Education and Industry Integration Pilot Projects of Qilu University of Technology (Shandong Academy of Sciences) (Grant Nos.2022GH018 and 2022PY055)support from the Jinan City Science and Technology Bureau (Grant No.2021GXRC055)the Education Department of Hunan Province/Xiangtan University (Grant No.KZ0807969)funding for top talents at Qilu University of Technology (Shandong Academy of Sciences)support from the Jiangsu Province NSFC (Grant No.BK20180764)support from the National Key R&D Program of China (Grant No.2021YFB3601504)Natural Science Foundation of Shandong Province (Grant No.ZR2020KE019).
文摘Due to its lead-free composition and a unique double polarization hysteresis loop with a large maximum polarization(Pmax)and a small remnant polarization(Pr),AgNbO_(3)-based antiferroelectrics(AFEs)have attracted extensive research interest for electric energy storage applications.However,a low dielectric breakdown field(Eb)limits an energy density and its further development.In this work,a highly efficient method was proposed to fabricate high-energy-density Ag(Nb,Ta)O_(3) capacitor films on Si substrates,using a two-step process combining radio frequency(RF)-magnetron sputtering at 450℃and post-deposition rapid thermal annealing(RTA).The RTA process at 700℃led to sufficient crystallization of nanograins in the film,hindering their lateral growth by employing short annealing time of 5 min.The obtained Ag(Nb,Ta)O_(3) films showed an average grain size(D)of~14 nm(obtained by Debye-Scherrer formula)and a slender room temperature(RT)polarization-electric field(P-E)loop(Pr≈3.8 mC·cm^(−2) and P_(max)≈38 mC·cm^(−2) under an electric field of~3.3 MV·cm^(−1)),the P-E loop corresponding to a high recoverable energy density(W_(rec))of~46.4 J·cm^(−3) and an energy efficiency(η)of~80.3%.Additionally,by analyzing temperature-dependent dielectric property of the film,a significant downshift of the diffused phase transition temperature(T_(M2-M3))was revealed,which indicated the existence of a stable relaxor-like AFE phase near the RT.The downshift of the T_(M2-M3) could be attributed to a nanograin size and residual tensile strain of the film,and it led to excellent temperature stability(20-240℃)of the energy storage performance of the film.Our results indicate that the Ag(Nb,Ta)O_(3) film is a promising candidate for electrical energy storage applications.
基金Supported by the Opening Project of State Key Laboratory of Large Electric Drive System and Equipment Technology(SKLLDJ022020004).
文摘DC-link capacitors play a vital role in managing ripple voltage and current in converters and various devices.This study focuses on exploring the aging characteristics of DC-link capacitors in alternating humid and thermal environments aligned with the operational conditions in photovoltaic and wind power applications.Adhering to relevant power equipment standards,we designed a 24-h alternating humid and thermal aging environment tailored to the requirements of DC-link capacitors.An aging test platform is established,and 20 widely used metallized polypropylene film capacitors are selected for evaluation.Parameters such as the capacitance,equivalent series resistance(ESR),and phase angle are assessed during aging,as well as the onset time and extent of aging at various intervals.This study focuses on the aging mechanisms,analyzing electrode corrosion,the self-healing process,and dielectric aging.Fitting the aging characteristics enabled us to calculate the lifespan of the capacitor and predict it under different degrees of capacitance decay.The results show that under alternating humid and thermal conditions,capacitance attenuation and ESR increase exhibit exponential nonlinearity,influenced by factors such as the oxidation and self-healing of capacitive metal electrodes,dielectric main-chain fracture,and crystal transformation.This study underscores the pivotal role of encapsulation in determining the aging decay time.
基金This work is supported by the National Natural Science Foundation of China (No.51772127,51772131,and 52072151)Jinan Independent Innovative Team (2020GXRC015)+2 种基金Taishan Schol-ars (No.ts201712050)Natural Science Doctoral Foundation of Shandong Pro-vince (ZR2019BEM038)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong.
文摘Smart construction of battery-type anodes with high rate and good mechanical properties is significant for advanced sodium ion capacitors(SICs).Herein,a flexible film consisting of MoO_(2) subnanoclusters encapsulated in nitrogen-doped carbon nanofibers(MoO_(2) SCs@N-CNFs)is designed and synthesized via electrospinning toward SICs as anodes.The strong N-Mo interaction guarantees the stable yet uniform dispersion of high loading MoO_(2) SCs(≈40 wt.%)in the flexible carbonaceous substrate.The sub-nanoscale effect of SCs restrains electrode pulverization and improves the Na+diffusion kinetics,rendering better pseudocapacitance-dominated Na+-storage properties than the nanocrystal counterpart.The MoO_(2) SCs@N-CNFs paper with mass loadings of 2.2–10.1 mg cm^(−2) can be directly used as free-standing anode for SICs,which exhibit high reversible gravimetric/areal capacities both in liquid and quasi-solid-state electrolytes.The assembled flexible SICs competitively exhibit exceptional energy density and cycling stability.More significantly,the sub-nanoscale engineering strategy here is promisingly generalized to future electrode design for other electrochemical energy-related applications and beyond.
文摘The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.