Synthesizing multi-component composites via a straightforward,reliable,and scalable approach has been challenging.Herein,a three-dimensional nitrogen-doped porous carbon decorated with core-shell Ni_(3)Sn_(2)@carbon p...Synthesizing multi-component composites via a straightforward,reliable,and scalable approach has been challenging.Herein,a three-dimensional nitrogen-doped porous carbon decorated with core-shell Ni_(3)Sn_(2)@carbon particles(3D N-PC/Ni_(3)Sn_(2)@C)was customized through a simple salt-template pyrolysis approach.The formed Ni_(3)Sn_(2) particles are perfectly surrounded by crystalline carbon layers and em-bedded in 3D carbon walls during pyrolysis.The dual protection of crystalline carbon layers and porous carbon walls guarantees the electrical conductivity and stability of Ni_(3)Sn_(2).The intriguing 3D and core-shell structure coupled with the introduction of multiple components empowers the composite with rich heterogeneous interface and conductive network,and contributes to the lightweight,corrosion resistance,oxidation resistance,and superior stability of electromagnetic(EM)wave absorbers.The N-PC/Ni_(3)Sn_(2)@C possesses the minimum reflection loss(RL min)of-54.01 dB and wide effective absorption bandwidth(EAB)of 7.36 GHz under a low filler content of less than 10%.The concept in the work proposes a facile,eco-friendly,and scalable pathway for the synthesis of other heterogeneous structures of EM wave ab-sorbers.展开更多
Developing microwave absorption(MA)materials with satisfied comprehensive performance is a great challenge for tackling severe electromagnetic pollution.In particular,the magnetic component/carbon hybrids absorbers al...Developing microwave absorption(MA)materials with satisfied comprehensive performance is a great challenge for tackling severe electromagnetic pollution.In particular,the magnetic component/carbon hybrids absorbers always suffer from high filler loading.Herein,we propose a feasible strategy to construct hierarchical porous carbon with tightly embedded Ni nanoparticles(Ni@NPC).These highly dispersed Ni nanoparticles produce strong magnetic coupling networks to enhance magnetic loss abilities.Moreover,the interconnected hierarchical dielectric carbon network affords favorable dipolar/interfacial polarization,conduction loss,multiple reflection and scattering.Impressively,with an ultralow filler loading of 5 wt.%,the resultant Ni@NPC/paraffin composite achieves an excellent MA performance with a minimum reflection loss of as high as-72.4 dB and a broad absorption bandwidth of 5.0 GHz.This capability outperforms most current magnetic-dielectric hybrids counterparts.Furthermore,the MA capacity can be easily tuned with adjustments in thickness,content and type of magnetic material.Thus,this work opens up new avenues for the development of high-performance and lightweight MA materials.展开更多
研究以超高盐榨菜腌制废水为对象,考察填料种类、负荷和温度对ASBBR启动及处理效能的影响。研究结果表明,在温度为30℃,盐度为7%(NaCl计),负荷为1 kg COD/(m3·d)的条件下,采用聚氨酯泡沫填料的反应器经67 d可成功构建超高盐榨菜腌...研究以超高盐榨菜腌制废水为对象,考察填料种类、负荷和温度对ASBBR启动及处理效能的影响。研究结果表明,在温度为30℃,盐度为7%(NaCl计),负荷为1 kg COD/(m3·d)的条件下,采用聚氨酯泡沫填料的反应器经67 d可成功构建超高盐榨菜腌制废水厌氧生物处理系统,较未设置填料、投加半软性组合填料、球形组合填料和聚苯乙烯泡沫填料的反应器分别缩短了26、6、24和18 d,且运行至第79天,可使出水COD降至375 mg/L,COD去除率为92.86%;通过对负荷的阶段逐步提高,可提升反应器有机负荷至15 kg COD/(m3·d),使进水COD为(27 000±2 000)mg/L的超高盐废水,出水COD均值降至2 200 mg/L,平均去除率达到92.03%;温度对反应器处理效能影响显著,温度分别为30、25、20、15和10℃时,反应器COD去除率分别为92.63%、84.07%、67.13%、54.61%和44.19%。展开更多
Inspired by the pomegranate natural artful structure,pomegranate micro/nano hierarchical plasma configuration of Fe/Fe3C@graphitized carbon(FFC/pCL)was constructed based on the green sol-gel method and in-situ chemica...Inspired by the pomegranate natural artful structure,pomegranate micro/nano hierarchical plasma configuration of Fe/Fe3C@graphitized carbon(FFC/pCL)was constructed based on the green sol-gel method and in-situ chemical vapor deposition(CVD)synthesis protocol.Pomegranate-like FFC/pCL successfully overcame the agglomeration phenomenon of magnetic nanoparticles with each seed of the pomegranate consisting of Fe/Fe_(3)C as cores and graphitized carbon layers as shells.The high-density arrangement of magnetic nanoparticles and the design of pomegranate-like heterostructures lead to enhanced plasmon resonance.Thus,the pomegranate-like FFC/pCL achieved a great electromagnetic wave(EMW)absorbing performance of 6.12 GHz wide band absorption at a low mass adding of only 16.7 wt.%.Such excellent EMW performance can be attributed to its unique pomegranate hierarchical plasma configuration with separated nanoscale iron cores,surface porous texture,and good carbon conductive network.This investigation provides a new paradigm for the development of magnetic/carbon based EMW absorbing materials by taking advantage of pomegranate hierarchical plasma configuration.展开更多
This paper presents the study of moisture content, hardness, bulk density, apparent porosity, tensile and flexural characteristics of composite properties of Luffa aegyptiaca fiber. Luffa aegyptiaca reinforced epoxy c...This paper presents the study of moisture content, hardness, bulk density, apparent porosity, tensile and flexural characteristics of composite properties of Luffa aegyptiaca fiber. Luffa aegyptiaca reinforced epoxy composites have been developed by hand lay-up method with Luffa fiber untreated and treated conditions for 12 Hrs and 24 Hrs in different filler loading as in 2:1 ratio (5%, 10%, 15%, 20% and 25%). The effects of filler loading on the moisture content, hardness, bulk density, apparent porosity, tensile and flexural properties were studied. In general, the treated Luffa fibre composite for 24 Hrs showed better improvement properties via addition of modified Luffa fibre as reinforcement. However, tensile and flexural properties improved continuously with increasing filler loading up to 20% but decreasing at 25% due to weak interfacial bonding for both untreated and treated composite. The favourable results were obtained at 20% for treated composite at 24 Hrs especially at tensile and flexural characteristics and are suitable for mechanical applications.展开更多
基金financially supported by the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Synthesizing multi-component composites via a straightforward,reliable,and scalable approach has been challenging.Herein,a three-dimensional nitrogen-doped porous carbon decorated with core-shell Ni_(3)Sn_(2)@carbon particles(3D N-PC/Ni_(3)Sn_(2)@C)was customized through a simple salt-template pyrolysis approach.The formed Ni_(3)Sn_(2) particles are perfectly surrounded by crystalline carbon layers and em-bedded in 3D carbon walls during pyrolysis.The dual protection of crystalline carbon layers and porous carbon walls guarantees the electrical conductivity and stability of Ni_(3)Sn_(2).The intriguing 3D and core-shell structure coupled with the introduction of multiple components empowers the composite with rich heterogeneous interface and conductive network,and contributes to the lightweight,corrosion resistance,oxidation resistance,and superior stability of electromagnetic(EM)wave absorbers.The N-PC/Ni_(3)Sn_(2)@C possesses the minimum reflection loss(RL min)of-54.01 dB and wide effective absorption bandwidth(EAB)of 7.36 GHz under a low filler content of less than 10%.The concept in the work proposes a facile,eco-friendly,and scalable pathway for the synthesis of other heterogeneous structures of EM wave ab-sorbers.
基金financially supported by the National Natural Science Foundation of China(Nos.21776308 and 21908245)the Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC009)the China Postdoctoral Science Foundation(No.2018T110187)。
文摘Developing microwave absorption(MA)materials with satisfied comprehensive performance is a great challenge for tackling severe electromagnetic pollution.In particular,the magnetic component/carbon hybrids absorbers always suffer from high filler loading.Herein,we propose a feasible strategy to construct hierarchical porous carbon with tightly embedded Ni nanoparticles(Ni@NPC).These highly dispersed Ni nanoparticles produce strong magnetic coupling networks to enhance magnetic loss abilities.Moreover,the interconnected hierarchical dielectric carbon network affords favorable dipolar/interfacial polarization,conduction loss,multiple reflection and scattering.Impressively,with an ultralow filler loading of 5 wt.%,the resultant Ni@NPC/paraffin composite achieves an excellent MA performance with a minimum reflection loss of as high as-72.4 dB and a broad absorption bandwidth of 5.0 GHz.This capability outperforms most current magnetic-dielectric hybrids counterparts.Furthermore,the MA capacity can be easily tuned with adjustments in thickness,content and type of magnetic material.Thus,this work opens up new avenues for the development of high-performance and lightweight MA materials.
基金supported by the Taishan Scholar Project(No.ts201511080)the China Postdoctoral Science Foundation(No.2021M691963)+3 种基金the Key Research and Development Program of Shandong Province of China(Nos.2020JMRH0503 and 2019JMRH0402)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2021003)the National Natural Science Foundation of China(Nos.51672059 and 51772060)Doctoral Scientific Research Start-up Foundation from Shandong University of Technology(Nos.4041/419008 and 4041/420022).
文摘Inspired by the pomegranate natural artful structure,pomegranate micro/nano hierarchical plasma configuration of Fe/Fe3C@graphitized carbon(FFC/pCL)was constructed based on the green sol-gel method and in-situ chemical vapor deposition(CVD)synthesis protocol.Pomegranate-like FFC/pCL successfully overcame the agglomeration phenomenon of magnetic nanoparticles with each seed of the pomegranate consisting of Fe/Fe_(3)C as cores and graphitized carbon layers as shells.The high-density arrangement of magnetic nanoparticles and the design of pomegranate-like heterostructures lead to enhanced plasmon resonance.Thus,the pomegranate-like FFC/pCL achieved a great electromagnetic wave(EMW)absorbing performance of 6.12 GHz wide band absorption at a low mass adding of only 16.7 wt.%.Such excellent EMW performance can be attributed to its unique pomegranate hierarchical plasma configuration with separated nanoscale iron cores,surface porous texture,and good carbon conductive network.This investigation provides a new paradigm for the development of magnetic/carbon based EMW absorbing materials by taking advantage of pomegranate hierarchical plasma configuration.
文摘This paper presents the study of moisture content, hardness, bulk density, apparent porosity, tensile and flexural characteristics of composite properties of Luffa aegyptiaca fiber. Luffa aegyptiaca reinforced epoxy composites have been developed by hand lay-up method with Luffa fiber untreated and treated conditions for 12 Hrs and 24 Hrs in different filler loading as in 2:1 ratio (5%, 10%, 15%, 20% and 25%). The effects of filler loading on the moisture content, hardness, bulk density, apparent porosity, tensile and flexural properties were studied. In general, the treated Luffa fibre composite for 24 Hrs showed better improvement properties via addition of modified Luffa fibre as reinforcement. However, tensile and flexural properties improved continuously with increasing filler loading up to 20% but decreasing at 25% due to weak interfacial bonding for both untreated and treated composite. The favourable results were obtained at 20% for treated composite at 24 Hrs especially at tensile and flexural characteristics and are suitable for mechanical applications.