Since the USA patent of electroslag remelting(ESR) metallurgy was held by P. K. Hopkins in 1940, the ESR technology has now entered a relatively mature stage after a 70-year history of development. At present, the ann...Since the USA patent of electroslag remelting(ESR) metallurgy was held by P. K. Hopkins in 1940, the ESR technology has now entered a relatively mature stage after a 70-year history of development. At present, the annual capacity of ESR steels around the world is approximately 2 million tonnes. ESR metallurgy emerged in China in 1958. Since then, electroslag furnaces were gradually installed in Chinese special steel plants. At present, there are more than 200 electroslag remelting furnaces in the metallurgical workshops of these steel plants with an annual production capacity of about 500,000 tonnes of ingots and components made of about 200 varieties of steels, including high quality steels and superalloys. This ESR technology is used as a special remelting and refining method for producing high quality steels and superalloys. However, traditional ESR technology has the disadvantages of environmental pollution and extremely high specific power consumption. High power consumption restricts, to a certain degree, the competitiveness of ESR steels in the marketplace. The measures of power saving in ESR have been researched in recent years. In this paper, some factors influencing power consumption, such as filling ratio, slag system, slag amount, melting rate and furnace structure are reviewed, and several new ESR technologies for power saving are proposed.展开更多
Agricultural productivity is crucial to the economy.The output and quality of crops have a direct impact on people’s daily lives and a country’s food and clothing.Therefore,harvesting high-quality crops efficiently ...Agricultural productivity is crucial to the economy.The output and quality of crops have a direct impact on people’s daily lives and a country’s food and clothing.Therefore,harvesting high-quality crops efficiently and maximizing yield per unit area are the most important goals pursued by farmers.As an important parameter of plant growth,light intensity is one of the important factors that affects plant growth and development,morphological establishment and accumulation of functional chemical substances.When light intensity cannot meet the plant’s needs,the optimal light intensity or uneven light distribution will have a greater impact on plant growth and development.This paper aims to address the optimal plant light intensity problem.The paper presents an expert system technology database storing the empirical value of real-time light intensity values and compares it with a parallel particle swarm optimization algorithm to identify the optimal locations where LED lights need to be turned on and where drive circuit lit LED arrays need to be situated,to identify the number of LED fill lights and to solve light intensity optimization problems.展开更多
The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is ...The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.展开更多
A well-developed drainage network was carved in the study area in a hard calcretized and gypcretized gravelly sand of the Dibdibba Formation (Al-Rukham slope) in pluvial episodes in the post-pleistocene age, and is re...A well-developed drainage network was carved in the study area in a hard calcretized and gypcretized gravelly sand of the Dibdibba Formation (Al-Rukham slope) in pluvial episodes in the post-pleistocene age, and is referred to be paleo-drainage due to the current witnessed aridity. This study aims to investigate the geomorphologic, morphometric, and stratigraphic characteristics of the paleo-drainage system and its role in recharging shallow aquifers. Morphometric analysis was accomplished using GIS and remote sensing techniques. Six vertical pit holes were dug across the area to investigate the stratigraphy and recharging capacity. The drainage system is composed of 10 closely spaced, subparallel, dendritic, elongated, and variant-sloped drainage basins with highest stream order of 5. Water flows NE from Al-Rukham ridge’s crest (60 m a.m.s.l.) downstream in Khor Al-Subiyah coastal flat. The bed rock’s hard resistant nature lowered its infiltration and recharging capacity to the shallow aquifer, whereas the coarse-grained wadi fills deposits increased infiltration capacity of the surface sediments, but the water percolation chance is limited as it eventually directed seaward by the same-directed general topography resulting in limiting potential recharge to the shallow aquifers. This is suggested to oppose the salt water intrusion and thus enhance fresh water quality.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51475313)
文摘Since the USA patent of electroslag remelting(ESR) metallurgy was held by P. K. Hopkins in 1940, the ESR technology has now entered a relatively mature stage after a 70-year history of development. At present, the annual capacity of ESR steels around the world is approximately 2 million tonnes. ESR metallurgy emerged in China in 1958. Since then, electroslag furnaces were gradually installed in Chinese special steel plants. At present, there are more than 200 electroslag remelting furnaces in the metallurgical workshops of these steel plants with an annual production capacity of about 500,000 tonnes of ingots and components made of about 200 varieties of steels, including high quality steels and superalloys. This ESR technology is used as a special remelting and refining method for producing high quality steels and superalloys. However, traditional ESR technology has the disadvantages of environmental pollution and extremely high specific power consumption. High power consumption restricts, to a certain degree, the competitiveness of ESR steels in the marketplace. The measures of power saving in ESR have been researched in recent years. In this paper, some factors influencing power consumption, such as filling ratio, slag system, slag amount, melting rate and furnace structure are reviewed, and several new ESR technologies for power saving are proposed.
基金support from the Top-notch talent plan program of higher education in Hebei(BJ2017036)Natural Science Foundation of Hebei Province(No.C2015204043)Key Research and Development Program of Hebei Province(18227209D,18227209D-1).
文摘Agricultural productivity is crucial to the economy.The output and quality of crops have a direct impact on people’s daily lives and a country’s food and clothing.Therefore,harvesting high-quality crops efficiently and maximizing yield per unit area are the most important goals pursued by farmers.As an important parameter of plant growth,light intensity is one of the important factors that affects plant growth and development,morphological establishment and accumulation of functional chemical substances.When light intensity cannot meet the plant’s needs,the optimal light intensity or uneven light distribution will have a greater impact on plant growth and development.This paper aims to address the optimal plant light intensity problem.The paper presents an expert system technology database storing the empirical value of real-time light intensity values and compares it with a parallel particle swarm optimization algorithm to identify the optimal locations where LED lights need to be turned on and where drive circuit lit LED arrays need to be situated,to identify the number of LED fill lights and to solve light intensity optimization problems.
基金National Key Technology R&D Program in the 12th Five Year Plan of China (No. 2011BAB10B06)Independent Innovation Foundation of Tianjin University (No. 1102119)
文摘The theory and method of system integration for the real-time monitoring of core rock-fill dam filling con- struction quality are studied in this paper. First, the importance analysis of system integration factors is carried out with the analytic hierarchy process. Then, according to the analysis result of integration factors, the conceptual model of system integration is built based on function integration, index integration, technology integration and information integration, the index structure of core rock-fill dam filling construction quality control is constructed and the method of function integration and technology integration is studied. The mathematical model of process monitoring is built according to monitoring objective, process and indexes. Research results have been applied in Nuozhadu core rock-fill dam construction management, realizing system integration through building appropriate monitoring work flow and comprehensive information platform of digital dam.
文摘A well-developed drainage network was carved in the study area in a hard calcretized and gypcretized gravelly sand of the Dibdibba Formation (Al-Rukham slope) in pluvial episodes in the post-pleistocene age, and is referred to be paleo-drainage due to the current witnessed aridity. This study aims to investigate the geomorphologic, morphometric, and stratigraphic characteristics of the paleo-drainage system and its role in recharging shallow aquifers. Morphometric analysis was accomplished using GIS and remote sensing techniques. Six vertical pit holes were dug across the area to investigate the stratigraphy and recharging capacity. The drainage system is composed of 10 closely spaced, subparallel, dendritic, elongated, and variant-sloped drainage basins with highest stream order of 5. Water flows NE from Al-Rukham ridge’s crest (60 m a.m.s.l.) downstream in Khor Al-Subiyah coastal flat. The bed rock’s hard resistant nature lowered its infiltration and recharging capacity to the shallow aquifer, whereas the coarse-grained wadi fills deposits increased infiltration capacity of the surface sediments, but the water percolation chance is limited as it eventually directed seaward by the same-directed general topography resulting in limiting potential recharge to the shallow aquifers. This is suggested to oppose the salt water intrusion and thus enhance fresh water quality.