The current-induced spin-orbit torque(SOT) is one of the most promising ways for high speed and low power spintronics devices. However, the mechanism of SOT driven magnetization reversal, especially the role of the fi...The current-induced spin-orbit torque(SOT) is one of the most promising ways for high speed and low power spintronics devices. However, the mechanism of SOT driven magnetization reversal, especially the role of the field-like torque(FLT), is still unclear. Here, we report the observed promotion and suppression of switching by FLT, which depends on the relative direction of FLT and spin polarization. Our results reveal that the FLT could modulate the switching speed and power consumption by affecting the work done by the damping-like torque, and leads two different reversal dynamical paths during the switching.Furthermore, the origin of incubation time in SOT induced switching is clarified simultaneously.展开更多
Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetizatio...Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetization switching.However,it is a challenge that so many multiple modes of magnetization switching are integrated together.Here we propose a method of implementing both unipolar switching and bipolar switching of the perpendicular magnetization within a single SOT device.The mode of switching can be easily changed by tuning the amplitude of the applied current.We show that the field-like torque plays an important role in switching process.The field-like torque induces the precession of the magnetization in the case of unipolar switching,however,the field-like torque helps to generate an effective zcomponent torque in the case of bipolar switching.In addition,the influence of key parameters on the mode of switching is discussed,including the field-like torque strength,the bias field,and the current density.Our proposal can be used to design novel reconfigurable logic circuits in the near future.展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos. 2021YFB3601303, and 2021YFB3601300)the National Natural Science Foundation of China (Grant Nos. 92164206, 61904009, and 62001014) for their financial support of this work。
文摘The current-induced spin-orbit torque(SOT) is one of the most promising ways for high speed and low power spintronics devices. However, the mechanism of SOT driven magnetization reversal, especially the role of the field-like torque(FLT), is still unclear. Here, we report the observed promotion and suppression of switching by FLT, which depends on the relative direction of FLT and spin polarization. Our results reveal that the FLT could modulate the switching speed and power consumption by affecting the work done by the damping-like torque, and leads two different reversal dynamical paths during the switching.Furthermore, the origin of incubation time in SOT induced switching is clarified simultaneously.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62171013 and 61704005)the National Key Research and Development Program of China(Grant Nos.2021YFB3601303,2021YFB3601304,and 2021YFB3601300)+1 种基金the Beijing Municipal Science and Technology Project,China(Grant No.Z201100004220002)the Fundamental Research Funds for the Central Universities,China(Grant No.YWF-21-BJ-J-1043)。
文摘Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetization switching.However,it is a challenge that so many multiple modes of magnetization switching are integrated together.Here we propose a method of implementing both unipolar switching and bipolar switching of the perpendicular magnetization within a single SOT device.The mode of switching can be easily changed by tuning the amplitude of the applied current.We show that the field-like torque plays an important role in switching process.The field-like torque induces the precession of the magnetization in the case of unipolar switching,however,the field-like torque helps to generate an effective zcomponent torque in the case of bipolar switching.In addition,the influence of key parameters on the mode of switching is discussed,including the field-like torque strength,the bias field,and the current density.Our proposal can be used to design novel reconfigurable logic circuits in the near future.