The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the runn...The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km-b-1 to 400 km.h-1, and the vibration mechanism are analyzed.展开更多
Vegetation indices (Ⅵ) are one of the standard science products available from the Moderate Resolution Imaging Spectroradiometer (MODIS). Validation of MODIS-Ⅵ products was an important prerequisite to using the...Vegetation indices (Ⅵ) are one of the standard science products available from the Moderate Resolution Imaging Spectroradiometer (MODIS). Validation of MODIS-Ⅵ products was an important prerequisite to using these variables for global modeling. In this study, validation of the MODIS-Ⅵ products including single-day MODIS, level 2 (gridded) daily MODIS surface reflectance (MOD09), 16-day composited MODIS (MOD13) was performed utilizing multisensor data from MODIS, Thematic Mapper (TM), and field radiometer, for a rice-planting region in southern China. The validation approach involved scaling up independent fine-grained datasets, including ground measurement and high spatial resolution imagery, to the coarser MODIS spatial resolutions. The 16-day composited MODIS reflectance and Ⅵ matched well with the ground measurement reflectance and Ⅵ. The Ⅵ of TM and MODIS were lower than the ground Ⅵ. The results demonstrated the accuracy, reliability, and utility of the MODIS-Ⅵ products for the study region.展开更多
Continuous cropping is a common pattern of modern agriculture that takes regional advantages for crop yield profits.Along the progress of mono-cropping continuously supported by intensive fertilizer inputs,such a crop...Continuous cropping is a common pattern of modern agriculture that takes regional advantages for crop yield profits.Along the progress of mono-cropping continuously supported by intensive fertilizer inputs,such a cropping pattern often undergoes serious problems with low fertilizer use efficiencies and unsustainable crop production.In this study,we dealt with a>25-year continuous garlic cropping system as an example for a problem-solving investigation.These garlic cropping soils underwent problems characterized by loss of soil organic matter,dramatic retention of NH_(4)^(+)-N,and excess accumulation of phosphate and potash chemicals.Through hydroponic simulations,we revealed that the presence of NH_(4)^(+)-N inhibited the root uptake of NO_(3)^(-)-N and K by 68% and 88%,respectively.Despite the traditionally emphasized importance of K,we observed the negative effect of high K on the growth of garlic roots.Further field experiments demonstrated that P and K applications can be reduced by 60% and 50%,respectively,without loss of yield.We thus developed a high-performance fertilization strategy by integrating a recomposed NPK fertilizer formulation to reduce unnecessary P and K inputs,a supplementary application of long-lasting C of woody peat to compensate for the soil C loss,and a foliar K approach to strengthen the stomatal function improvement with K.This strategy allowed a 15% increase of garlic yield and a seasonal soil C profit of ca.1.8 Mg ha^(-1)even at ca.30% lower fertilizer cost.This study would be helpful in managing garlic fertilization and developing compound fertilizers,with broader significance for other long-term cropping soils.展开更多
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
Model validation and updating is critical to model credibility growth. In order to assess model credibility quantitatively and locate model error precisely, a new dynamic validation method based on extremum field mean...Model validation and updating is critical to model credibility growth. In order to assess model credibility quantitatively and locate model error precisely, a new dynamic validation method based on extremum field mean mode decomposition(EMMD) and the Prony method is proposed in this paper. Firstly, complex dynamic responses from models and real systems are processed into stationary components by EMMD. These components always have definite physical meanings which can be the evidence about rough model error location. Secondly, the Prony method is applied to identify the features of each EMMD component. Amplitude similarity, frequency similarity, damping similarity and phase similarity are defined to describe the similarity of dynamic responses.Then quantitative validation metrics are obtained based on the improved entropy weight and energy proportion. Precise model error location is realized based on the physical meanings of these features. The application of this method in aircraft controller design provides evidence about its feasibility and usability.展开更多
In safety dominant industries, nondestructive evaluation (NDE) is crucial in quality assurance and assessment. Phased array ultrasonic testing (PAUT) as one of the NDE methods is more promising compared with conventio...In safety dominant industries, nondestructive evaluation (NDE) is crucial in quality assurance and assessment. Phased array ultrasonic testing (PAUT) as one of the NDE methods is more promising compared with conventional ultrasonic testing (UT) method in terms of inspection speed and flexibility. To incorporate PAUT, the techniques should be qualified, which traditionally is performed by extensive physical experiments. However, with the development of numerical models simulating UT method, it is expected to complement or partly replace the experiments with the intention to reduce costs and operational uncertainties. The models should be validated to ensure its consistency to reality. This validation work can be done by comparing the model with other validated models or corresponding experiments. The purpose of current work focuses on the experimental validation of a numerical model, simSUNDT, developed by the Chalmers University of Technology. Validation is conducted by comparing different data presentations (A-, B- and C-scan) from experimental and simulated results with some well-defined artificial defects. Satisfactory correlations can be observed from the comparisons. After the validation, sound field optimization work aiming at retrieving maximized echo amplitude on a certain defect can be started using the model. This also reveals the flexibility of parametric studies using simulation models.展开更多
The geopedological viewpoint attempts to distinguish and introduce the smallest map unit that has the highest levels of homogeneity and uniformity with respect to landform, lithology, and soil, especially if the relat...The geopedological viewpoint attempts to distinguish and introduce the smallest map unit that has the highest levels of homogeneity and uniformity with respect to landform, lithology, and soil, especially if the relationship between geomorphology and soils in the region is well defined. This research intended to investigate the degree of validity generalization of results obtained in the geopedology approach for similar landforms in the Miayneh region of East Azerbaijan Province, Iran. For this purpose, soil diversity study was conducted through measuring it in a hierarchical sequence in categories of USDA soil taxonomy and by comparing similar units in the geopedological method through employing pedodiversity and similarity indices. After preparing the initial interpretative map (based on aerial photographs) at a scale of 1:20,000, the HPu211 unit that covered the greatest delineation of study area was selected and 28 soil profiles, about 90 meters apart, were excavated, described, and sampled in this unit. The degree of validity generalization of geopedological results for the mentioned unit was determined by digging 14 other soil profiles in a similar unit, called the validation area, which was located outside of the sample area. Results indicated that the value of Shannon’s diversity index increased from the level of soil order to soil family in both the sample and the generalization areas;however, only at the soil family level were there significant differences between soil diversity in the two areas at the confidence level of 95%. As well as classification of the profiles dug in the generalization area was different from that of the profiles dug in the sample area at the category of soil family. Therefore, it is possible that management generalizability in this method, even at the detailed scale, can satisfy the related needs. Consequently, interpretative or managerial purity of geopedological units must be considered in future research.展开更多
基金Acknowledgements This research is sponsored by the Major State Basic Research Development Program of China ("973" Program) (2013CB036203), the 111 Project (B13002), and the National Natural Science Foundation of China (U1434205, U1434210, 51338001 ).
文摘The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km-b-1 to 400 km.h-1, and the vibration mechanism are analyzed.
基金Project supported by the National Natural Science Foundation of China (No. 40171065)the National High Technology Research and Development Program (863 Program) of China (No. 2002AA243011)
文摘Vegetation indices (Ⅵ) are one of the standard science products available from the Moderate Resolution Imaging Spectroradiometer (MODIS). Validation of MODIS-Ⅵ products was an important prerequisite to using these variables for global modeling. In this study, validation of the MODIS-Ⅵ products including single-day MODIS, level 2 (gridded) daily MODIS surface reflectance (MOD09), 16-day composited MODIS (MOD13) was performed utilizing multisensor data from MODIS, Thematic Mapper (TM), and field radiometer, for a rice-planting region in southern China. The validation approach involved scaling up independent fine-grained datasets, including ground measurement and high spatial resolution imagery, to the coarser MODIS spatial resolutions. The 16-day composited MODIS reflectance and Ⅵ matched well with the ground measurement reflectance and Ⅵ. The Ⅵ of TM and MODIS were lower than the ground Ⅵ. The results demonstrated the accuracy, reliability, and utility of the MODIS-Ⅵ products for the study region.
基金supported by the 14th Five-Year Plan Innovation Program of the Institute of Soil Science,Chinese Academy of Sciences(No.ISSASIP2201)。
文摘Continuous cropping is a common pattern of modern agriculture that takes regional advantages for crop yield profits.Along the progress of mono-cropping continuously supported by intensive fertilizer inputs,such a cropping pattern often undergoes serious problems with low fertilizer use efficiencies and unsustainable crop production.In this study,we dealt with a>25-year continuous garlic cropping system as an example for a problem-solving investigation.These garlic cropping soils underwent problems characterized by loss of soil organic matter,dramatic retention of NH_(4)^(+)-N,and excess accumulation of phosphate and potash chemicals.Through hydroponic simulations,we revealed that the presence of NH_(4)^(+)-N inhibited the root uptake of NO_(3)^(-)-N and K by 68% and 88%,respectively.Despite the traditionally emphasized importance of K,we observed the negative effect of high K on the growth of garlic roots.Further field experiments demonstrated that P and K applications can be reduced by 60% and 50%,respectively,without loss of yield.We thus developed a high-performance fertilization strategy by integrating a recomposed NPK fertilizer formulation to reduce unnecessary P and K inputs,a supplementary application of long-lasting C of woody peat to compensate for the soil C loss,and a foliar K approach to strengthen the stomatal function improvement with K.This strategy allowed a 15% increase of garlic yield and a seasonal soil C profit of ca.1.8 Mg ha^(-1)even at ca.30% lower fertilizer cost.This study would be helpful in managing garlic fertilization and developing compound fertilizers,with broader significance for other long-term cropping soils.
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
基金supported by the Nature Science Foundation of Shaanxi Province(2012JM8020)
文摘Model validation and updating is critical to model credibility growth. In order to assess model credibility quantitatively and locate model error precisely, a new dynamic validation method based on extremum field mean mode decomposition(EMMD) and the Prony method is proposed in this paper. Firstly, complex dynamic responses from models and real systems are processed into stationary components by EMMD. These components always have definite physical meanings which can be the evidence about rough model error location. Secondly, the Prony method is applied to identify the features of each EMMD component. Amplitude similarity, frequency similarity, damping similarity and phase similarity are defined to describe the similarity of dynamic responses.Then quantitative validation metrics are obtained based on the improved entropy weight and energy proportion. Precise model error location is realized based on the physical meanings of these features. The application of this method in aircraft controller design provides evidence about its feasibility and usability.
文摘In safety dominant industries, nondestructive evaluation (NDE) is crucial in quality assurance and assessment. Phased array ultrasonic testing (PAUT) as one of the NDE methods is more promising compared with conventional ultrasonic testing (UT) method in terms of inspection speed and flexibility. To incorporate PAUT, the techniques should be qualified, which traditionally is performed by extensive physical experiments. However, with the development of numerical models simulating UT method, it is expected to complement or partly replace the experiments with the intention to reduce costs and operational uncertainties. The models should be validated to ensure its consistency to reality. This validation work can be done by comparing the model with other validated models or corresponding experiments. The purpose of current work focuses on the experimental validation of a numerical model, simSUNDT, developed by the Chalmers University of Technology. Validation is conducted by comparing different data presentations (A-, B- and C-scan) from experimental and simulated results with some well-defined artificial defects. Satisfactory correlations can be observed from the comparisons. After the validation, sound field optimization work aiming at retrieving maximized echo amplitude on a certain defect can be started using the model. This also reveals the flexibility of parametric studies using simulation models.
文摘The geopedological viewpoint attempts to distinguish and introduce the smallest map unit that has the highest levels of homogeneity and uniformity with respect to landform, lithology, and soil, especially if the relationship between geomorphology and soils in the region is well defined. This research intended to investigate the degree of validity generalization of results obtained in the geopedology approach for similar landforms in the Miayneh region of East Azerbaijan Province, Iran. For this purpose, soil diversity study was conducted through measuring it in a hierarchical sequence in categories of USDA soil taxonomy and by comparing similar units in the geopedological method through employing pedodiversity and similarity indices. After preparing the initial interpretative map (based on aerial photographs) at a scale of 1:20,000, the HPu211 unit that covered the greatest delineation of study area was selected and 28 soil profiles, about 90 meters apart, were excavated, described, and sampled in this unit. The degree of validity generalization of geopedological results for the mentioned unit was determined by digging 14 other soil profiles in a similar unit, called the validation area, which was located outside of the sample area. Results indicated that the value of Shannon’s diversity index increased from the level of soil order to soil family in both the sample and the generalization areas;however, only at the soil family level were there significant differences between soil diversity in the two areas at the confidence level of 95%. As well as classification of the profiles dug in the generalization area was different from that of the profiles dug in the sample area at the category of soil family. Therefore, it is possible that management generalizability in this method, even at the detailed scale, can satisfy the related needs. Consequently, interpretative or managerial purity of geopedological units must be considered in future research.