Land plants in natural soil form intimate relationships with the diverse root bacterial microbiota. A growing body of evidence shows that these microbes are important for plant growth and health. Root microbiota compo...Land plants in natural soil form intimate relationships with the diverse root bacterial microbiota. A growing body of evidence shows that these microbes are important for plant growth and health. Root microbiota composition has been widely studied in several model plants and crops; however, little is known about how root microbiota vary throughout the plant's life cycle under field conditions. We performed longitudinal dense sampling in field trials to track the time-series shift of the root microbiota from two representative rice cultivars in two separate locations in China. We found that the rice root microbiota varied dramatically during the vegetative stages and stabilized from the beginning of the reproductive stage, after which the root microbiota underwent relatively minor changes until rice ripening. Notably, both rice genotype and geographical location influenced the patterns of root microbiota shift that occurred during plant growth. The relative abundance of Deltaproteobacteria in roots significantly increased overtime throughout the entire life cycle of rice, while that of Betaproteobacteria, Firmicutes, and Gammaproteobacteria decreased. By a machine learning approach, we identified biomarker taxa and established a model to correlate root microbiota with rice resident time in the field(e.g., Nitrospira accumulated from 5 weeks/tillering in field-grown rice). Our work provides insights into the process of rice root microbiota establishment.展开更多
The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type...The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type of landslides, a distressed loess slope being subjected to deformation along the loess-NRM contact was comprehensively investigated through approaches of field monitoring and laboratory physical modeling. Field observation and physical modeling shows that the slope deformation will experience two distinct processes: 1) laterally retrogressive and vertically progressive propagation, which was initiated by falling of the slope head; and 2) retrogressively separate mass sliding along the weak basal zone of the loess-NRM contact with minor sliding along the paleosols within the loess. Shear failure of the loess-NRM contact may initiate in the middle section, followed by a progressive propagation towards the slope toe and inner slope. Analysis reveals that the deformation characteristics of the distressed slope are largely constrained by slope topography, the unique structure, physical and mechanical properties of loess and paleosols, and occurrence and nature of the loess-NRM contact. Rainfall has significantly influence on the deformation characteristics of the slope through its interaction with the loess and soil of the loess-NRM contact. Additionally, improper style and intensity of cutting on the slope greatly enhance and accelerate the deformation course of the slope.展开更多
在1967~1971年期间,美国POGO系列卫星进行了地磁场总强度测量,接着,1979~1980年MAGSAT地磁卫星进行了真正意义上的三分量测量.自此之后,卫星磁测沉静了20年.近年来,这一领域又重新进入高潮,其标志是1999年2月丹麦发射Orsted磁测卫星,200...在1967~1971年期间,美国POGO系列卫星进行了地磁场总强度测量,接着,1979~1980年MAGSAT地磁卫星进行了真正意义上的三分量测量.自此之后,卫星磁测沉静了20年.近年来,这一领域又重新进入高潮,其标志是1999年2月丹麦发射Orsted磁测卫星,2000年7月德国发射CHAMP磁测卫星,2000年11月阿根廷/美国合作发射SAC-C卫星.这一时期的磁测卫星还有南非和澳大利亚的卫星,而欧空局计划在2009年发射三颗磁测卫星Swarm,,中国的地磁卫星也在积极筹备之中.在这20多年的"沉静"中,各国地磁学家潜心研究的结果把POGO-MAGSAT和Orsted-Champ-SAC两代磁测卫星和地面磁测连接在一起,催生了新型地磁场模型和地磁图---"地磁场综合模型"(comprehensive model of geomagnetic field,简称CM).如果说过去的地磁场模型只是对主磁场的形态描述,那么,新一代模型不仅包括地核主磁场模型,而且包括岩石圈磁场模型、电离层磁场模型、磁层磁场模型、内部感应磁场模型以及空间环型磁场模型,力求在更广的范围内,以更深入的物理内涵和更高的精度表述地球磁场的全貌.本文在评述CM模型的基础上,提出下一代地磁模型的设想,讨论地球磁场三维巡测和综合建模的未来发展趋势和关键问题.展开更多
基金supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDB11020700)CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows(2016LH00012)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(QYZDB-SSW-SMC021)the National Natural Science Foundation of China(31772400)
文摘Land plants in natural soil form intimate relationships with the diverse root bacterial microbiota. A growing body of evidence shows that these microbes are important for plant growth and health. Root microbiota composition has been widely studied in several model plants and crops; however, little is known about how root microbiota vary throughout the plant's life cycle under field conditions. We performed longitudinal dense sampling in field trials to track the time-series shift of the root microbiota from two representative rice cultivars in two separate locations in China. We found that the rice root microbiota varied dramatically during the vegetative stages and stabilized from the beginning of the reproductive stage, after which the root microbiota underwent relatively minor changes until rice ripening. Notably, both rice genotype and geographical location influenced the patterns of root microbiota shift that occurred during plant growth. The relative abundance of Deltaproteobacteria in roots significantly increased overtime throughout the entire life cycle of rice, while that of Betaproteobacteria, Firmicutes, and Gammaproteobacteria decreased. By a machine learning approach, we identified biomarker taxa and established a model to correlate root microbiota with rice resident time in the field(e.g., Nitrospira accumulated from 5 weeks/tillering in field-grown rice). Our work provides insights into the process of rice root microbiota establishment.
基金the China Postdoctoral Science Foundation (Project No.2004035349).
文摘The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. To better understand the mechanism of this type of landslides, a distressed loess slope being subjected to deformation along the loess-NRM contact was comprehensively investigated through approaches of field monitoring and laboratory physical modeling. Field observation and physical modeling shows that the slope deformation will experience two distinct processes: 1) laterally retrogressive and vertically progressive propagation, which was initiated by falling of the slope head; and 2) retrogressively separate mass sliding along the weak basal zone of the loess-NRM contact with minor sliding along the paleosols within the loess. Shear failure of the loess-NRM contact may initiate in the middle section, followed by a progressive propagation towards the slope toe and inner slope. Analysis reveals that the deformation characteristics of the distressed slope are largely constrained by slope topography, the unique structure, physical and mechanical properties of loess and paleosols, and occurrence and nature of the loess-NRM contact. Rainfall has significantly influence on the deformation characteristics of the slope through its interaction with the loess and soil of the loess-NRM contact. Additionally, improper style and intensity of cutting on the slope greatly enhance and accelerate the deformation course of the slope.
文摘在1967~1971年期间,美国POGO系列卫星进行了地磁场总强度测量,接着,1979~1980年MAGSAT地磁卫星进行了真正意义上的三分量测量.自此之后,卫星磁测沉静了20年.近年来,这一领域又重新进入高潮,其标志是1999年2月丹麦发射Orsted磁测卫星,2000年7月德国发射CHAMP磁测卫星,2000年11月阿根廷/美国合作发射SAC-C卫星.这一时期的磁测卫星还有南非和澳大利亚的卫星,而欧空局计划在2009年发射三颗磁测卫星Swarm,,中国的地磁卫星也在积极筹备之中.在这20多年的"沉静"中,各国地磁学家潜心研究的结果把POGO-MAGSAT和Orsted-Champ-SAC两代磁测卫星和地面磁测连接在一起,催生了新型地磁场模型和地磁图---"地磁场综合模型"(comprehensive model of geomagnetic field,简称CM).如果说过去的地磁场模型只是对主磁场的形态描述,那么,新一代模型不仅包括地核主磁场模型,而且包括岩石圈磁场模型、电离层磁场模型、磁层磁场模型、内部感应磁场模型以及空间环型磁场模型,力求在更广的范围内,以更深入的物理内涵和更高的精度表述地球磁场的全貌.本文在评述CM模型的基础上,提出下一代地磁模型的设想,讨论地球磁场三维巡测和综合建模的未来发展趋势和关键问题.