Surface originated kink bands consist of an important failure mode for fibre-reinforced compo- sites under compression. The mechanical behavior of the fibre bridging kink bands is explored herein in the context of the...Surface originated kink bands consist of an important failure mode for fibre-reinforced compo- sites under compression. The mechanical behavior of the fibre bridging kink bands is explored herein in the context of the post-microbuckling theory. Expressions of bridging force are obtained for the entire postbuckling process of the fibres exhibiting weak or strong hardening. The postbuckling formulation of the fibres is applied to yield the toughness increment due to the advancing kink bands, and consequently leads to a quantitative pre- diction on the overall compressive stress strain curves of the fibre-reinforced composites.展开更多
In this paper, a comparative study on the fracture toughness of woven glass fibre reinforced polypropylene, chopped glass fibre reinforced polypropylene and nanoclay filled polypropylene composites is presented. Nanoc...In this paper, a comparative study on the fracture toughness of woven glass fibre reinforced polypropylene, chopped glass fibre reinforced polypropylene and nanoclay filled polypropylene composites is presented. Nanoclays (Cloisite 15A) of 1 wt. % to 5 wt. % were filled in polypropylene (PP) matrix and they were subjected to fracture toughness stu-dies. The specimen with 5 wt. % nanoclay showed 1.75 times and 3 times improvement in critical stress intensity factor (KIC) and strain energy release rate (GIC), respectively, over virgin PP. On the other hand, 3 wt. % nanoclay PP composites showed superior crack containment properties. These structural changes of composite specimens were examined using Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) methods. It showed that exfoli-ated nanocomposite structures were formed up to 3 wt. % nanoclay, whereas, intercalated nanocomposite structures formed above 3 wt. % nanoclay in the PP matrix. Furthermore, the woven fibre reinforced PP composites demonstrated superior crack resistant properties than that of clay filled nanocomposites and chopped fibre PP composites. However, KIC and GIC values for woven fibre composites were lesser than that of chopped fibre composites. Moreover, KIC and GIC values for both nanoclay filled PP composites and woven fibre composites are comparable even though the clay filled PP demonstrated catastrophic failure. Also, the crack propagation rate of PP-nanoclay composites is comparable to that of chopped fibre composites.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘Surface originated kink bands consist of an important failure mode for fibre-reinforced compo- sites under compression. The mechanical behavior of the fibre bridging kink bands is explored herein in the context of the post-microbuckling theory. Expressions of bridging force are obtained for the entire postbuckling process of the fibres exhibiting weak or strong hardening. The postbuckling formulation of the fibres is applied to yield the toughness increment due to the advancing kink bands, and consequently leads to a quantitative pre- diction on the overall compressive stress strain curves of the fibre-reinforced composites.
文摘In this paper, a comparative study on the fracture toughness of woven glass fibre reinforced polypropylene, chopped glass fibre reinforced polypropylene and nanoclay filled polypropylene composites is presented. Nanoclays (Cloisite 15A) of 1 wt. % to 5 wt. % were filled in polypropylene (PP) matrix and they were subjected to fracture toughness stu-dies. The specimen with 5 wt. % nanoclay showed 1.75 times and 3 times improvement in critical stress intensity factor (KIC) and strain energy release rate (GIC), respectively, over virgin PP. On the other hand, 3 wt. % nanoclay PP composites showed superior crack containment properties. These structural changes of composite specimens were examined using Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) methods. It showed that exfoli-ated nanocomposite structures were formed up to 3 wt. % nanoclay, whereas, intercalated nanocomposite structures formed above 3 wt. % nanoclay in the PP matrix. Furthermore, the woven fibre reinforced PP composites demonstrated superior crack resistant properties than that of clay filled nanocomposites and chopped fibre PP composites. However, KIC and GIC values for woven fibre composites were lesser than that of chopped fibre composites. Moreover, KIC and GIC values for both nanoclay filled PP composites and woven fibre composites are comparable even though the clay filled PP demonstrated catastrophic failure. Also, the crack propagation rate of PP-nanoclay composites is comparable to that of chopped fibre composites.