An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported.Within this system,each channel incorporates a rod-type fiber power amplifier,with individual operations reaching appro...An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported.Within this system,each channel incorporates a rod-type fiber power amplifier,with individual operations reaching approximately 233 W.The active-locking of these coherently combined channels,followed by compression using gratings,yields an output with a pulse energy of 504μJ and an average power of 403 W.Exceptional stability is maintained,with a 0.3%root mean square(RMS)deviation and a beam quality factor M^(2)<1.2.Notably,precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages.This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam,reducing it from 488 to 260 fs after the gratings compressor,while concurrently enhancing the energy of the primary peak from 65%to 92%.展开更多
We use a generalized scaling invariance of the dispersion-managed nonlinear Schrodinger equation to derive an approximate function for strongly dispersionmanaged solitons.We then analyze the regime in which the approx...We use a generalized scaling invariance of the dispersion-managed nonlinear Schrodinger equation to derive an approximate function for strongly dispersionmanaged solitons.We then analyze the regime in which the approximation is valid.Finally,we present a method for extracting the underlying soliton part from a noisy pulse,using the resulting approximate formula.展开更多
In this paper, we present a study of thermal, average power scaling, change in index of refraction and stress in photonic crystal fiber lasers with different pump schemes: forward pump scheme, backward pump scheme, fo...In this paper, we present a study of thermal, average power scaling, change in index of refraction and stress in photonic crystal fiber lasers with different pump schemes: forward pump scheme, backward pump scheme, forward pump scheme with reflection of 98%, backward pump scheme with reflection of 98% and bi-directional pump scheme. We show that management of thermal effects in fiber lasers will determine the efficiency and success of scaling-up efforts. In addition, we show that the most suitable scheme is the bi-directional.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.9215010612021004,and 11934006)the Innovation Project of Optics Valley Laboratory(No.OVL2021ZD001),the Major Program(JD)of Hubei Province(No.203BAA015)the Cross Research Support Program of Huazhong University of Science and Technology(No.2023JCYJ041).
文摘An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported.Within this system,each channel incorporates a rod-type fiber power amplifier,with individual operations reaching approximately 233 W.The active-locking of these coherently combined channels,followed by compression using gratings,yields an output with a pulse energy of 504μJ and an average power of 403 W.Exceptional stability is maintained,with a 0.3%root mean square(RMS)deviation and a beam quality factor M^(2)<1.2.Notably,precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages.This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam,reducing it from 488 to 260 fs after the gratings compressor,while concurrently enhancing the energy of the primary peak from 65%to 92%.
文摘We use a generalized scaling invariance of the dispersion-managed nonlinear Schrodinger equation to derive an approximate function for strongly dispersionmanaged solitons.We then analyze the regime in which the approximation is valid.Finally,we present a method for extracting the underlying soliton part from a noisy pulse,using the resulting approximate formula.
文摘In this paper, we present a study of thermal, average power scaling, change in index of refraction and stress in photonic crystal fiber lasers with different pump schemes: forward pump scheme, backward pump scheme, forward pump scheme with reflection of 98%, backward pump scheme with reflection of 98% and bi-directional pump scheme. We show that management of thermal effects in fiber lasers will determine the efficiency and success of scaling-up efforts. In addition, we show that the most suitable scheme is the bi-directional.